Sliding subspace design based on linear matrix inequalities

Alán Tapia; Raymundo Márquez; Miguel Bernal; Joaquín Cortez

Kybernetika (2014)

  • Volume: 50, Issue: 3, page 436-449
  • ISSN: 0023-5954

Abstract

top
In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach.

How to cite

top

Tapia, Alán, et al. "Sliding subspace design based on linear matrix inequalities." Kybernetika 50.3 (2014): 436-449. <http://eudml.org/doc/261887>.

@article{Tapia2014,
abstract = {In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach.},
author = {Tapia, Alán, Márquez, Raymundo, Bernal, Miguel, Cortez, Joaquín},
journal = {Kybernetika},
keywords = {sliding mode control; variable structure; sliding subspace design; linear matrix inequalities; sliding mode control; variable structure; sliding subspace design; linear matrix inequalities},
language = {eng},
number = {3},
pages = {436-449},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Sliding subspace design based on linear matrix inequalities},
url = {http://eudml.org/doc/261887},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Tapia, Alán
AU - Márquez, Raymundo
AU - Bernal, Miguel
AU - Cortez, Joaquín
TI - Sliding subspace design based on linear matrix inequalities
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 3
SP - 436
EP - 449
AB - In this work, an alternative for sliding surface design based on linear and bilinear matrix inequalities is proposed. The methodology applies for reduced and integral sliding mode control, both continuous- and discrete-time; it takes advantage of the Finsler's lemma to provide a greater degree of freedom than existing approaches for sliding subspace design. The sliding surfaces thus constructed are systematically found via convex optimization techniques, which are efficiently implemented in commercially available software. Examples are provided to illustrate the effectiveness of the proposed approach.
LA - eng
KW - sliding mode control; variable structure; sliding subspace design; linear matrix inequalities; sliding mode control; variable structure; sliding subspace design; linear matrix inequalities
UR - http://eudml.org/doc/261887
ER -

References

top
  1. Abidi, K., Xu, J.-X., Xinghuo, Y., 10.1109/TAC.2007.894537, IEEE Trans. Automat. Control 52 (2007), 4, 709-715. MR2310051DOI10.1109/TAC.2007.894537
  2. Ackermann, J., Utkin, V., 10.1109/9.661072, IEEE Trans. Automat. Control 43 (1998), 2, 234-237. Zbl0904.93004MR1605958DOI10.1109/9.661072
  3. Arezelier, D., Angulo, M., Bernussou, J., Sliding surface design by quadratic stabilization and pole placement., In: Proc. 4th European Control Conference, 1997. 
  4. Boyd, S., Ghaoui, L. El, Féron, E., Balakrishnan, V., Linear matrix inequalities in system and control theory., Stud. Appl. Math. 15 (1994). Zbl0816.93004MR1284712
  5. Castaños, F., Fridman, L., 10.1109/TAC.2006.875008, IEEE Trans. Automat. Control 51 (2006), 5, 853-858. MR2232613DOI10.1109/TAC.2006.875008
  6. Chang, J.-L., 10.1111/j.1934-6093.2002.tb00348.x, Asian J. Control 4 (2002), 2, 217-222. DOI10.1111/j.1934-6093.2002.tb00348.x
  7. Chen, Y.-P., Chang, J.-L., 10.1080/002077200290993, Internat. J. System Sci. 31 (2000), 4, 417-420. Zbl1080.93526DOI10.1080/002077200290993
  8. Choi, H., 10.1016/S0005-1098(99)00081-3, Automatica 37 (1999), 1707-1715. MR1831849DOI10.1016/S0005-1098(99)00081-3
  9. Choi, H., 10.1109/TAC.2007.894543, IEEE Trans. Automat. Control 52 (2007), 4, 736-742. MR2310056DOI10.1109/TAC.2007.894543
  10. Cruz-Zavala, E., Moreno, J., Fridman, L., 10.1093/imamci/dns005, IMA J. Math. Control Inform. 29 (2012), 4, 491-505. Zbl1256.93032MR3002708DOI10.1093/imamci/dns005
  11. Oliveira, M. C. De, Skelton, R. E., Stability Tests for Constrained Linear Systems. In Perspectives in Robust Control., Springer, Berlin 1994. 
  12. Dorling, C. M., Zinober, A. S. I., 10.1080/00207178608933583, Internat. J. Control 44 (1986), 1, 65-82. DOI10.1080/00207178608933583
  13. Dorling, C. M., Zinober, A. S. I., 10.1080/00207178808906304, Internat. J. Control 48 (1988), 5, 2043-2054. MR0973773DOI10.1080/00207178808906304
  14. Draženović, B., Milosavljević, C., Veselić, B., Gligić, V., Comprehensive approach to sliding subspace design in linear time invariant systems., In: IEEE International Workshop on Variable Structure Systems 2012, pp. 473-478. 
  15. Edwards, C., Sliding Mode Control: Theory and Applications., Taylor and Francis, London 1998. 
  16. Edwards, C., 10.1016/j.automatica.2004.05.004, Automatica 40 (2004), 10, 1761-1769. Zbl1079.93014MR2155468DOI10.1016/j.automatica.2004.05.004
  17. Fridman, L., Moreno, J., Iriarte, R., Sliding Modes After the First Decade of the 21st Century., Springer, Berlin 2011. MR3087279
  18. Hermann, C., Spurgeon, S. K., Edwards, C., 10.1080/00207170110061040, Internat. J. Control 72 (2001), 1194-1209. MR1852597DOI10.1080/00207170110061040
  19. Huang, J. Y., Yeung, K. S., Arbitrary eigenvalue assignment via switching hyperplanes design scheme and extension of Ackermann's formula., In: IEEE Conference on Computer, Communication, Control and Power Engineering 4 (1993), 17-20. 
  20. Hung, Y. S., Macfarlan, A. G. J., Multivariable Feedback: A Quasi-Classical Approach. Volume 40., Springer-Verlag, Berlin 1982. MR0790848
  21. Kautsky, J., Nichols, N. K., Dooren, P. Van, 10.1080/0020718508961188, Internat. J. Control 41 (1985), 2, 1129-1155. MR0792933DOI10.1080/0020718508961188
  22. Kočvara, M., Sting, M., Penbmi, version 2.1., www.penopt.com, 2008. 
  23. Mehta, A. J., Bandyopadhyay, B., Inoue, A., 10.1109/TIE.2010.2040555, IEEE Trans. Industr. Electronics 57 (2010), 11, 3793-3800. DOI10.1109/TIE.2010.2040555
  24. Pan, Y., Kumar, K. D., Liu, G., 10.1002/rnc.1678, Internat. J. Robust and Nonlinear Control 21 (2011), 18, 2064-2078. Zbl1237.93037MR2871742DOI10.1002/rnc.1678
  25. Tanaka, K., Wang, H. O., Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach., John Wiley and Sons, New York 2001. 
  26. Utkin, U., Sliding Modes in Control and Optimization., Springer, Berlin 1992. Zbl0748.93044MR1295845
  27. Utkin, V., Shi, J., Integral sliding mode in systems operating under uncertainty conditions., In: Conference on Decision and Control 1996. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.