A practical solution to implement nonlinear output regulation via dynamic mappings

Carlos Armenta; Jorge Álvarez; Raymundo Márquez; Miguel Bernal

Kybernetika (2019)

  • Volume: 55, Issue: 2, page 385-401
  • ISSN: 0023-5954

Abstract

top
This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic calculation of the mappings required for state-feedback regulation has been put forward; following the latter, an error-feedback extension is hereby provided which, when combined with design conditions in the form of linear matrix inequalities, becomes suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO system. Issues concerning the implementation as well as the solutions adopted, are discussed.

How to cite

top

Armenta, Carlos, et al. "A practical solution to implement nonlinear output regulation via dynamic mappings." Kybernetika 55.2 (2019): 385-401. <http://eudml.org/doc/294360>.

@article{Armenta2019,
abstract = {This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic calculation of the mappings required for state-feedback regulation has been put forward; following the latter, an error-feedback extension is hereby provided which, when combined with design conditions in the form of linear matrix inequalities, becomes suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO system. Issues concerning the implementation as well as the solutions adopted, are discussed.},
author = {Armenta, Carlos, Álvarez, Jorge, Márquez, Raymundo, Bernal, Miguel},
journal = {Kybernetika},
keywords = {nonlinear output regulation; linear matrix inequality; twin rotor; real-time},
language = {eng},
number = {2},
pages = {385-401},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A practical solution to implement nonlinear output regulation via dynamic mappings},
url = {http://eudml.org/doc/294360},
volume = {55},
year = {2019},
}

TY - JOUR
AU - Armenta, Carlos
AU - Álvarez, Jorge
AU - Márquez, Raymundo
AU - Bernal, Miguel
TI - A practical solution to implement nonlinear output regulation via dynamic mappings
JO - Kybernetika
PY - 2019
PB - Institute of Information Theory and Automation AS CR
VL - 55
IS - 2
SP - 385
EP - 401
AB - This paper presents a novel error-feedback practical solution for real-time implementation of nonlinear output regulation. Sufficient and necessary conditions for both state- and error-feedback output regulation have been established for linear and nonlinear systems several decades ago. In their most general form, these solutions require solving a set of nonlinear partial differential equations, which may be hard or even impossible to solve analytically. In recent years, a methodology for dynamic calculation of the mappings required for state-feedback regulation has been put forward; following the latter, an error-feedback extension is hereby provided which, when combined with design conditions in the form of linear matrix inequalities, becomes suitable for real-time setups. Real-time results are presented for a nonlinear twin rotor MIMO system. Issues concerning the implementation as well as the solutions adopted, are discussed.
LA - eng
KW - nonlinear output regulation; linear matrix inequality; twin rotor; real-time
UR - http://eudml.org/doc/294360
ER -

References

top
  1. Ahmed, Q., Bhatti, A. I., Iqbal, S., 10.1109/cca.2009.5281000, In: Control Applications, (CCA) and Intelligent Control, (ISIC), 2009 IEEE, pp. 1009-1014. DOI10.1109/cca.2009.5281000
  2. Bernal, M., Marquez, R., Estrada, V., Castillo, B., An element-wise linear matrix inequality approach for output regulation problems., In: World Automation Congress (WAC) 2012, Puerto Vallarta 2012, pp. 1-6. 
  3. Bernal, M., Marquez, R., Estrada-Manzo, V., Castillo-Toledo, B., 10.1109/fuzz-ieee.2012.6251202, In: IEEE International Conference on Fuzzy Systems 2012, pp. 1-7. DOI10.1109/fuzz-ieee.2012.6251202
  4. {Boyd}, S., Ghaoui, L. E., Feron, E., Belakrishnan, V., 10.1137/1.9781611970777, SIAM, Studies In Applied Mathematics 15, Philadelphia 1994. MR1284712DOI10.1137/1.9781611970777
  5. Byrnes, C. I., Isidori, A., 10.1109/tac.2003.817926, IEEE Trans. Automat. Control 48 (2003), 10, 1712-1723. MR2021420DOI10.1109/tac.2003.817926
  6. Byrnes, C. I., Isidori, A., 10.1109/tac.2004.838492, IEEE Trans. Automat. Control 49 (2004), 12, 2244-2247. MR2106753DOI10.1109/tac.2004.838492
  7. Byrnes, C. I., Priscoli, F. D., Isidori, A., 10.1007/978-1-4612-2020-6, Springer Science and Business Media, 2012. MR2742099DOI10.1007/978-1-4612-2020-6
  8. Davison, E., 10.1109/tac.1976.1101137, IEEE Trans. Automat. Control 21 (1976), 1, 25-34. MR0406616DOI10.1109/tac.1976.1101137
  9. Duan, G. R., Yu, H. H., LMIs in Control Systems: Analysis, Design and Applications., CRC Press, 2013. MR3328859
  10. Ltd, Feedback instruments, Manual, East Sussex. TRMS 33-949S User, Twin Rotor MIMO System Control Experiments, 1998. 
  11. Francis, B. A., 10.1137/0315033, SIAM J. Control Optim. 15 (1077), 486-505. MR0446631DOI10.1137/0315033
  12. Francis, B. A., Wonham, W. M., 10.1007/bf01447855, J. Appl. Math. Optim. 2 (1975), 170-194. MR0389331DOI10.1007/bf01447855
  13. Glauser, M., Lin, Z., Allaire, P. E., 10.1109/tcst.2009.2016953, IEEE Trans. Control Systems Technol. 18 (2010), 2, 480-490. DOI10.1109/tcst.2009.2016953
  14. Henriques, J., Gil, P., Cardoso, A., Carvalho, P., Dourado, A., 10.1016/j.conengprac.2010.06.001, Control Engrg. Practice 18 (2010), 10, 1183-1196. DOI10.1016/j.conengprac.2010.06.001
  15. Isidori, A., 10.1007/978-1-84628-615-5, Springer, London 1995. MR1410988DOI10.1007/978-1-84628-615-5
  16. Isidori, A., Byrnes, C. I., 10.1109/9.45168, {IEEE} Trans. Automat. Control 35 (1990) 2, 131-140. Zbl0989.93041MR1038409DOI10.1109/9.45168
  17. Jensen, T. N., Wisniewski, R., DePersis, C., Kallesøe, C. S., 10.1016/j.conengprac.2013.10.004, Control Engrg. Practice 22 (2014), 103-113. DOI10.1016/j.conengprac.2013.10.004
  18. Khalil, H., Nonlinear Systems. Third edition., Prentice Hall, New Jersey 2002. 
  19. Kim, W., Kim, H., Chung, C. C., Tomizuka, M., 10.1109/tcst.2010.2066276, IEEE Trans. Control Systems Technol. 19 (2011), 5, 1296-1304. DOI10.1109/tcst.2010.2066276
  20. Lewis, F. L., Dawson, D. M., Abdallah, C. T., 10.1201/9780203026953, CRC Press, 2003. DOI10.1201/9780203026953
  21. Mahony, R., Mareels, I., Bastin, G., Campion, G., 10.1016/0967-0661(96)00100-1, Control Engingrg. Practice 4 (1966), 7, 1009-1014. DOI10.1016/0967-0661(96)00100-1
  22. Marconi, L., Praly, L., 10.1109/tac.2008.923674, IEEE Trans. Automat. Control 53 (2008), 5, 1184-1202. MR2445674DOI10.1109/tac.2008.923674
  23. Meda, J. A., Castillo, B., 10.1016/j.fss.2008.12.006, Fuzzy Sets Systems 160 (2009), 19, 2860-2875. MR2573363DOI10.1016/j.fss.2008.12.006
  24. Meda, J. A., Gomez, J. C., Castillo, B., 10.1109/TFUZZ.2011.2172689, {IEEE} Trans. Fuzzy Systems 20 (2012), 2, 235-247. DOI10.1109/TFUZZ.2011.2172689
  25. Nejjari, F., Rotondo, D., Puig, V., Innocenti, M., 10.1109/med.2011.5983178, In: 19th Mediterranean Conference on Control and Automation (MED), IEEE 2011, pp. 1082-1087. DOI10.1109/med.2011.5983178
  26. Pandey, S. K., Laxmi, V., 10.1007/978-81-322-2205-7_2, Comput. Intell. Data Mining 31 (2015), 11-21. DOI10.1007/978-81-322-2205-7_2
  27. Pavlov, A., Janssen, B., Wouw, N. Van de, Nijmeijer, H., 10.1109/tcst.2006.890294, IEEE Trans. Control Systems Technol. 15 (2007), 4, 786-793. MR2190284DOI10.1109/tcst.2006.890294
  28. Pratap, B., Purwar, S., Neural network observer for twin rotor mimo system: an lmi based approach., In: The 2010 International Conference on Modelling, Identification and Control (ICMIC), IEEE 2010, pp. 539-544. 
  29. Robles, R., Bernal, M., 10.1109/tfuzz.2014.2321773, IEEE Trans. Fuzzy Systems 23 (2015), 1, 230-233. DOI10.1109/tfuzz.2014.2321773
  30. Tanaka, K., Wang, H. O., 10.1002/0471224596, John Wiley and Sons, New York 2001. DOI10.1002/0471224596
  31. Tao, C.-W., Taur, J.-S., Chang, Y.-H., Chang, C.-W., 10.1109/tfuzz.2010.2051447, IEEE Trans. Fuzzy Systems 18 (2010), 5, 893-905. DOI10.1109/tfuzz.2010.2051447
  32. Tapia, A., Márquez, R., Bernal, M., Cortez, J., Sliding subspace design based on linear matrix inequalities., Kybernetika 50 (2014), 3, 633-641. MR3245539
  33. Tarn, T. J., Sanposh, P., Cheng, D., Zhang, M., 10.1109/tcst.2004.841674, IEEE Trans. Control Systems Technol. 13 (2005), 605-610. DOI10.1109/tcst.2004.841674
  34. Umemura, Y., Sakamoto, N., 10.1109/tcst.2014.2366077, IEEE Trans. Control Systems Technol. 23 (2015), 4, 1587-1593. DOI10.1109/tcst.2014.2366077
  35. Yoon, S. Y., Di, L., Lin, Z., 10.1016/j.conengprac.2015.11.002, Control Engrg. Practice 46 (2016), 166-175. MR3318613DOI10.1016/j.conengprac.2015.11.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.