Page 1 Next

Displaying 1 – 20 of 41

Showing per page

A fault tolerant direct control allocation scheme with integral sliding modes

Mirza Tariq Hamayun, Christopher Edwards, Halim Alwi, Abdulrahman Bajodah (2015)

International Journal of Applied Mathematics and Computer Science

In this paper, integral sliding mode control ideas are combined with direct control allocation in order to create a fault tolerant control scheme. Traditional integral sliding mode control can directly handle actuator faults; however, it cannot do so with actuator failures. Therefore, a mechanism needs to be adopted to distribute the control effort amongst the remaining functioning actuators in cases of faults or failures, so that an acceptable level of closed-loop performance can be retained. This...

An H sliding mode observer for Takagi-Sugeno nonlinear systems with simultaneous actuator and sensor faults

Ali Ben Brahim, Slim Dhahri, Fayçal Ben Hmida, Anis Sellami (2015)

International Journal of Applied Mathematics and Computer Science

This paper considers the problem of robust reconstruction of simultaneous actuator and sensor faults for a class of uncertain Takagi-Sugeno nonlinear systems with unmeasurable premise variables. The proposed fault reconstruction and estimation design method with H∞ performance is used to reconstruct both actuator and sensor faults when the latter are transformed into pseudo-actuator faults by introducing a simple filter. The main contribution is to develop a sliding mode observer (SMO) with two...

An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links

Andrzej Bartoszewicz, Piotr Leśniewski (2014)

International Journal of Applied Mathematics and Computer Science

A new discrete-time sliding-mode congestion controller for connection-oriented networks is proposed. Packet losses which may occur during the transmission process are explicitly taken into account. Two control laws are presented, each obtained by minimizing a different cost functional. The first one concentrates on the output variable, whereas in the second one the whole state vector is considered. Weighting factors for adjusting the influence of the control signal and appropriate (state or output)...

Application of a second order VSC to nonlinear systems in multi-input parametric-pure-feedback form

Antonella Ferrara, Luisa Giacomini (2000)


The use of a multi-input control design procedure for uncertain nonlinear systems expressible in multi-input parametric-pure feedback form to determine the control law for a class of mechanical systems is described in this paper. The proposed procedure, based on the well-known backstepping design technique, relies on the possibility of extending to multi-input uncertain systems a second order sliding mode control approach recently developed, thus reducing the computational load, as well as increasing...

Control of an induction motor using sliding mode linearization

Erik Etien, Sébastien Cauet, Laurent Rambault, Gérard Champenois (2002)

International Journal of Applied Mathematics and Computer Science

Nonlinear control of the squirrel induction motor is designed using sliding mode theory. The developed approach leads to the design of a sliding mode controller in order to linearize the behaviour of an induction motor. The second problem described in the paper is decoupling between two physical outputs: the rotor speed and the rotor flux modulus. The sliding mode tools allow us to separate the control from these two outputs. To take account of parametric variations, a model-based approach is used...

Decentralized control for large-scale systems with time-varying delay and unmatched uncertainties

Wen-Jeng Liu (2011)


Many real-world systems contain uncertainties and with time-varying delays, also, they have become larger and more complicated. Hence, a new decentralized variable structure control law is proposed for a class of uncertain large-scale system with time varying delay in the interconnection and time varying unmatched uncertainties in the state matrix. The proposed decentralized control law for the large-scale time-varying delay system is realized independently through the delayed terms and it can drive...

Design of passive fault-tolerant controllers of a quadrotor based on sliding mode theory

Abdel-Razzak Merheb, Hassan Noura, François Bateman (2015)

International Journal of Applied Mathematics and Computer Science

In this paper, sliding mode control is used to develop two passive fault tolerant controllers for an AscTec Pelican UAV quadrotor. In the first approach, a regular sliding mode controller (SMC) augmented with an integrator uses the robustness property of variable structure control to tolerate partial actuator faults. The second approach is a cascaded sliding mode controller with an inner and outer SMC loops. In this configuration, faults are tolerated in the fast inner loop controlling the velocity...

Design of reaching phase for variable structure controller based on SVD method

Goshaidas Ray, Sitansu Dey (2004)


This paper considers a design of variable structure with sliding mode controller for a class of uncertain dynamic system based on Singular Value Decomposition (SVD) method. The proposed method reduces the number of switching gain vector components and performs satisfactorily while the external disturbance does not satisfy the matching conditions. Subsequently the stability of the global system is studied and furthermore, the design of switched gain matrix elements based on fuzzy logic approach provides...

Design of reaching phase for variable structure controller based on Householder transformation

Goshaidas Ray, Sitansu Dey, T. K. Bhattacharyya (2005)


The paper presents control signals generation methods, preventing the excitation of residual vibration in slightly damped oscillational systems. It is focused on the feedforward methods, as most of the vibrations in examined processes are induced by the control, while the influence of disturbances is mostly negligible. Application of these methods involves ensuring of the insensitivity to natural frequency change, which can be reached in classical approach only by considerable increase of transient...

Flow control in connection-oriented networks: a time-varying sampling period system case study

Przemysław Ignaciuk, Andrzej Bartoszewicz (2008)


In this paper congestion control problem in connection-oriented communication network with multiple data sources is addressed. In the considered network the feedback necessary for the flow regulation is provided by means of management units, which are sent by each source once every M data packets. The management units, carrying the information about the current network state, return to their origin round trip time RTT after they were sent. Since the source rate is adjusted only at the instant of...

Further results on sliding manifold design and observation for a heat equation

Enrique Barbieri, Sergey Drakunov, J. Fernando Figueroa (2000)


This article presents new extensions regarding a nonlinear control design framework that is suitable for a class of distributed parameter systems with uncertainties (DPS). The control objective is first formulated as a function of the distributed system state. Then, a control is sought such that the set in the state space where this relation is true forms an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. The Sliding Mode controller implements a theoretically...

LMI-based adaptive fuzzy integral sliding mode control of mismatched uncertain systems

Chaouki Mnasri, Moncef Gasmi (2011)

International Journal of Applied Mathematics and Computer Science

Integral sliding mode design is considered for a class of uncertain systems in the presence of mismatched uncertainties in both state and input matrices, as well as norm-bounded nonlinearities and external disturbances. A sufficient condition for the robust stability of the sliding manifold is derived by means of linear matrix inequalities. The initial existence of the sliding mode is guaranteed by the proposed control law. The improvement of the proposed control scheme performances, such as chattering...

Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model

Dezhi Xu, Bin Jiang, Peng Shi (2012)

International Journal of Applied Mathematics and Computer Science

Based on a Takagi-Sugeno (T-S) fuzzy model and an inverse system method, this paper deals with the problem of actuator fault estimation for a class of nonlinear dynamic systems. Two different estimation strategies are developed. Firstly, T-S fuzzy models are used to describe nonlinear dynamic systems with an actuator fault. Then, a robust sliding mode observer is designed based on a T-S fuzzy model, and an inverse system method is used to estimate the actuator fault. Next, the second fault estimation...

Nonlinear controller design of a ship autopilot

Mirosław Tomera (2010)

International Journal of Applied Mathematics and Computer Science

The main goal here is to design a proper and efficient controller for a ship autopilot based on the sliding mode control method. A hydrodynamic numerical model of CyberShip II including wave effects is applied to simulate the ship autopilot system by using time domain analysis. To compare the results similar research was conducted with the PD controller, which was adapted to the autopilot system. The differences in simulation results between two controllers are analyzed by a cost function composed...

Currently displaying 1 – 20 of 41

Page 1 Next