Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains

Toshiyuki Suzuki

Mathematica Bohemica (2014)

  • Volume: 139, Issue: 2, page 231-238
  • ISSN: 0862-7959

Abstract

top
Nonlinear Schrödinger equations (NLS) a with strongly singular potential a | x | - 2 on a bounded domain Ω are considered. If Ω = N and a > - ( N - 2 ) 2 / 4 , then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here a = - ( N - 2 ) 2 / 4 is excluded because D ( P a ( N ) 1 / 2 ) is not equal to H 1 ( N ) , where P a ( N ) : = - Δ - ( N - 2 ) 2 / ( 4 | x | 2 ) is nonnegative and selfadjoint in L 2 ( N ) . On the other hand, if Ω is a smooth and bounded domain with 0 Ω , the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000). Hence we can see that H 0 1 ( Ω ) D ( P a ( N ) 1 / 2 ) H s ( Ω ) ( s < 1 ). Therefore we can construct global weak solutions to (NLS) a on Ω by the energy methods.

How to cite

top

Suzuki, Toshiyuki. "Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains." Mathematica Bohemica 139.2 (2014): 231-238. <http://eudml.org/doc/261912>.

@article{Suzuki2014,
abstract = {Nonlinear Schrödinger equations (NLS)$_\{a\}$ with strongly singular potential $a|x|^\{-2\}$ on a bounded domain $\Omega $ are considered. If $\Omega =\mathbb \{R\}^\{N\}$ and $a>-(N-2)^\{2\}/4$, then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here $a=-(N-2)^\{2\}/4$ is excluded because $D(P_\{a(N)\}^\{1/2\})$ is not equal to $H^\{1\}(\mathbb \{R\}^\{N\})$, where $P_\{a(N)\}:=-\Delta -(N-2)^\{2\}/(4|x|^\{2\})$ is nonnegative and selfadjoint in $L^\{2\}(\mathbb \{R\}^\{N\})$. On the other hand, if $\Omega $ is a smooth and bounded domain with $0\in \Omega $, the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000). Hence we can see that $H_\{0\}^\{1\}(\Omega )\subset D(P_\{a(N)\}^\{1/2\}) \subset H^\{s\}(\Omega )$ ($s<1$). Therefore we can construct global weak solutions to (NLS)$_\{a\}$ on $\Omega $ by the energy methods.},
author = {Suzuki, Toshiyuki},
journal = {Mathematica Bohemica},
keywords = {energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality; energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality},
language = {eng},
number = {2},
pages = {231-238},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains},
url = {http://eudml.org/doc/261912},
volume = {139},
year = {2014},
}

TY - JOUR
AU - Suzuki, Toshiyuki
TI - Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 231
EP - 238
AB - Nonlinear Schrödinger equations (NLS)$_{a}$ with strongly singular potential $a|x|^{-2}$ on a bounded domain $\Omega $ are considered. If $\Omega =\mathbb {R}^{N}$ and $a>-(N-2)^{2}/4$, then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here $a=-(N-2)^{2}/4$ is excluded because $D(P_{a(N)}^{1/2})$ is not equal to $H^{1}(\mathbb {R}^{N})$, where $P_{a(N)}:=-\Delta -(N-2)^{2}/(4|x|^{2})$ is nonnegative and selfadjoint in $L^{2}(\mathbb {R}^{N})$. On the other hand, if $\Omega $ is a smooth and bounded domain with $0\in \Omega $, the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000). Hence we can see that $H_{0}^{1}(\Omega )\subset D(P_{a(N)}^{1/2}) \subset H^{s}(\Omega )$ ($s<1$). Therefore we can construct global weak solutions to (NLS)$_{a}$ on $\Omega $ by the energy methods.
LA - eng
KW - energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality; energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality
UR - http://eudml.org/doc/261912
ER -

References

top
  1. Burq, N., Planchon, F., Stalker, J. G., Tahvildar-Zadeh, A. S., 10.1016/S0022-1236(03)00238-6, J. Funct. Anal. 203 (2003), 519-549. (2003) Zbl1030.35024MR2003358DOI10.1016/S0022-1236(03)00238-6
  2. Burq, N., Planchon, F., Stalker, J. G., Tahvildar-Zadeh, A. S., 10.1512/iumj.2004.53.2541, Indiana Univ. Math. J. 53 (2004), 1665-1680. (2004) Zbl1084.35014MR2106340DOI10.1512/iumj.2004.53.2541
  3. Cazenave, T., An Introduction to Nonlinear Schrödinger Equation, Textos de Métodos Matemáticos 22 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro (1989). (1989) 
  4. Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10 American Mathematical Society, Providence, Courant Institute of Mathematical Sciences, New York (2003). (2003) Zbl1055.35003MR2002047
  5. Ginibre, J., Velo, G., 10.1016/0022-1236(79)90076-4, J. Funct. Anal. 32 (1979), 1-32. (1979) Zbl0396.35028MR0533218DOI10.1016/0022-1236(79)90076-4
  6. Kato, T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor. 46 (1987), 113-129. (1987) Zbl0632.35038MR0877998
  7. Okazawa, N., 10.4099/math1924.22.199, Jap. J. Math., New Ser. 22 (1996), 199-239. (1996) MR1432373DOI10.4099/math1924.22.199
  8. Okazawa, N., Suzuki, T., Yokota, T., 10.1080/00036811.2011.631914, Appl. Anal. 91 (2012), 1605-1629. (2012) Zbl1246.35189MR2959550DOI10.1080/00036811.2011.631914
  9. Okazawa, N., Suzuki, T., Yokota, T., 10.3934/eect.2012.1.337, Evol. Equ. Control Theory 1 (2012), 337-354. (2012) Zbl1283.35128MR3085232DOI10.3934/eect.2012.1.337
  10. Suzuki, T., 10.3934/eect.2013.2.531, Evol. Equ. Control Theory 2 (2013), 531-542. (2013) Zbl1282.35358MR3093229DOI10.3934/eect.2013.2.531
  11. Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library 18 North-Holland, Amsterdam (1978). (1978) Zbl0387.46033MR0503903
  12. Vazquez, J. L., Zuazua, E., 10.1006/jfan.1999.3556, J. Funct. Anal. 173 (2000), 103-153. (2000) Zbl0953.35053MR1760280DOI10.1006/jfan.1999.3556

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.