Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains
Mathematica Bohemica (2014)
- Volume: 139, Issue: 2, page 231-238
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSuzuki, Toshiyuki. "Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains." Mathematica Bohemica 139.2 (2014): 231-238. <http://eudml.org/doc/261912>.
@article{Suzuki2014,
abstract = {Nonlinear Schrödinger equations (NLS)$_\{a\}$ with strongly singular potential $a|x|^\{-2\}$ on a bounded domain $\Omega $ are considered. If $\Omega =\mathbb \{R\}^\{N\}$ and $a>-(N-2)^\{2\}/4$, then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here $a=-(N-2)^\{2\}/4$ is excluded because $D(P_\{a(N)\}^\{1/2\})$ is not equal to $H^\{1\}(\mathbb \{R\}^\{N\})$, where $P_\{a(N)\}:=-\Delta -(N-2)^\{2\}/(4|x|^\{2\})$ is nonnegative and selfadjoint in $L^\{2\}(\mathbb \{R\}^\{N\})$. On the other hand, if $\Omega $ is a smooth and bounded domain with $0\in \Omega $, the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000). Hence we can see that $H_\{0\}^\{1\}(\Omega )\subset D(P_\{a(N)\}^\{1/2\}) \subset H^\{s\}(\Omega )$ ($s<1$). Therefore we can construct global weak solutions to (NLS)$_\{a\}$ on $\Omega $ by the energy methods.},
author = {Suzuki, Toshiyuki},
journal = {Mathematica Bohemica},
keywords = {energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality; energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality},
language = {eng},
number = {2},
pages = {231-238},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains},
url = {http://eudml.org/doc/261912},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Suzuki, Toshiyuki
TI - Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 231
EP - 238
AB - Nonlinear Schrödinger equations (NLS)$_{a}$ with strongly singular potential $a|x|^{-2}$ on a bounded domain $\Omega $ are considered. If $\Omega =\mathbb {R}^{N}$ and $a>-(N-2)^{2}/4$, then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here $a=-(N-2)^{2}/4$ is excluded because $D(P_{a(N)}^{1/2})$ is not equal to $H^{1}(\mathbb {R}^{N})$, where $P_{a(N)}:=-\Delta -(N-2)^{2}/(4|x|^{2})$ is nonnegative and selfadjoint in $L^{2}(\mathbb {R}^{N})$. On the other hand, if $\Omega $ is a smooth and bounded domain with $0\in \Omega $, the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000). Hence we can see that $H_{0}^{1}(\Omega )\subset D(P_{a(N)}^{1/2}) \subset H^{s}(\Omega )$ ($s<1$). Therefore we can construct global weak solutions to (NLS)$_{a}$ on $\Omega $ by the energy methods.
LA - eng
KW - energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality; energy method; nonlinear Schrödinger equation; inverse-square potential; Hardy-Poincaré inequality
UR - http://eudml.org/doc/261912
ER -
References
top- Burq, N., Planchon, F., Stalker, J. G., Tahvildar-Zadeh, A. S., 10.1016/S0022-1236(03)00238-6, J. Funct. Anal. 203 (2003), 519-549. (2003) Zbl1030.35024MR2003358DOI10.1016/S0022-1236(03)00238-6
- Burq, N., Planchon, F., Stalker, J. G., Tahvildar-Zadeh, A. S., 10.1512/iumj.2004.53.2541, Indiana Univ. Math. J. 53 (2004), 1665-1680. (2004) Zbl1084.35014MR2106340DOI10.1512/iumj.2004.53.2541
- Cazenave, T., An Introduction to Nonlinear Schrödinger Equation, Textos de Métodos Matemáticos 22 Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro (1989). (1989)
- Cazenave, T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics 10 American Mathematical Society, Providence, Courant Institute of Mathematical Sciences, New York (2003). (2003) Zbl1055.35003MR2002047
- Ginibre, J., Velo, G., 10.1016/0022-1236(79)90076-4, J. Funct. Anal. 32 (1979), 1-32. (1979) Zbl0396.35028MR0533218DOI10.1016/0022-1236(79)90076-4
- Kato, T., On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor. 46 (1987), 113-129. (1987) Zbl0632.35038MR0877998
- Okazawa, N., 10.4099/math1924.22.199, Jap. J. Math., New Ser. 22 (1996), 199-239. (1996) MR1432373DOI10.4099/math1924.22.199
- Okazawa, N., Suzuki, T., Yokota, T., 10.1080/00036811.2011.631914, Appl. Anal. 91 (2012), 1605-1629. (2012) Zbl1246.35189MR2959550DOI10.1080/00036811.2011.631914
- Okazawa, N., Suzuki, T., Yokota, T., 10.3934/eect.2012.1.337, Evol. Equ. Control Theory 1 (2012), 337-354. (2012) Zbl1283.35128MR3085232DOI10.3934/eect.2012.1.337
- Suzuki, T., 10.3934/eect.2013.2.531, Evol. Equ. Control Theory 2 (2013), 531-542. (2013) Zbl1282.35358MR3093229DOI10.3934/eect.2013.2.531
- Triebel, H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland Mathematical Library 18 North-Holland, Amsterdam (1978). (1978) Zbl0387.46033MR0503903
- Vazquez, J. L., Zuazua, E., 10.1006/jfan.1999.3556, J. Funct. Anal. 173 (2000), 103-153. (2000) Zbl0953.35053MR1760280DOI10.1006/jfan.1999.3556
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.