Nonlinear boundary value problems involving the extrinsic mean curvature operator
Mathematica Bohemica (2014)
- Volume: 139, Issue: 2, page 299-313
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMawhin, Jean. "Nonlinear boundary value problems involving the extrinsic mean curvature operator." Mathematica Bohemica 139.2 (2014): 299-313. <http://eudml.org/doc/261917>.
@article{Mawhin2014,
abstract = {The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type \[ \nabla \cdot \bigg (\frac\{\nabla v\}\{\sqrt\{1 - |\nabla v|^2\}\}\bigg ) = f(|x|,v) \quad \text\{in\} \ B\_R,\quad u = 0 \quad \text\{on\} \ \partial B\_R , \]
where $B_R$ is the open ball of center $0$ and radius $R$ in $\mathbb \{R\}^n$, and $f$ is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.},
author = {Mawhin, Jean},
journal = {Mathematica Bohemica},
keywords = {extrinsic mean curvature operator; Dirichlet problem; radial solution; positive solution; Leray-Schauder degree; critical point theory; extrinsic mean curvature operator; Dirichlet problem; radial solution; positive solution; Leray-Schauder degree; critical point theory},
language = {eng},
number = {2},
pages = {299-313},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonlinear boundary value problems involving the extrinsic mean curvature operator},
url = {http://eudml.org/doc/261917},
volume = {139},
year = {2014},
}
TY - JOUR
AU - Mawhin, Jean
TI - Nonlinear boundary value problems involving the extrinsic mean curvature operator
JO - Mathematica Bohemica
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 139
IS - 2
SP - 299
EP - 313
AB - The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type \[ \nabla \cdot \bigg (\frac{\nabla v}{\sqrt{1 - |\nabla v|^2}}\bigg ) = f(|x|,v) \quad \text{in} \ B_R,\quad u = 0 \quad \text{on} \ \partial B_R , \]
where $B_R$ is the open ball of center $0$ and radius $R$ in $\mathbb {R}^n$, and $f$ is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.
LA - eng
KW - extrinsic mean curvature operator; Dirichlet problem; radial solution; positive solution; Leray-Schauder degree; critical point theory; extrinsic mean curvature operator; Dirichlet problem; radial solution; positive solution; Leray-Schauder degree; critical point theory
UR - http://eudml.org/doc/261917
ER -
References
top- Ambrosetti, A., Brézis, H., Cerami, G., 10.1006/jfan.1994.1078, J. Funct. Anal. 122 (1994), 519-543. (1994) Zbl0805.35028MR1276168DOI10.1006/jfan.1994.1078
- Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
- Bartnik, R., Simon, L., 10.1007/BF01211061, Commun. Math. Phys. 87 (1982), 131-152. (1982) Zbl0512.53055MR0680653DOI10.1007/BF01211061
- Bereanu, C., Jebelean, P., 10.3934/dcds.2013.33.47, Discrete Contin. Dyn. Syst. 33 (2013), 47-66. (2013) Zbl1281.34024MR2972945DOI10.3934/dcds.2013.33.47
- Bereanu, C., Jebelean, P., Mawhin, J., 10.1090/S0002-9939-08-09612-3, Proc. Am. Math. Soc. 137 (2009), 161-169. (2009) Zbl1161.35024MR2439437DOI10.1090/S0002-9939-08-09612-3
- Bereanu, C., Jebelean, P., Mawhin, J., 10.1002/mana.200910083, Math. Nachr. 283 (2010), 379-391. (2010) Zbl1185.35113MR2643019DOI10.1002/mana.200910083
- Bereanu, C., Jebelean, P., Mawhin, J., 10.3934/dcds.2010.28.637, Discrete Contin. Dyn. Syst. 28 (2010), 637-648. (2010) Zbl1193.35083MR2644761DOI10.3934/dcds.2010.28.637
- Bereanu, C., Jebelean, P., Mawhin, J., 10.4171/RLM/589, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl. 22 (2011), 89-111. (2011) MR2799910DOI10.4171/RLM/589
- Bereanu, C., Jebelean, P., Mawhin, J., 10.1016/j.jfa.2011.07.027, J. Funct. Anal. 261 (2011), 3226-3246. (2011) Zbl1241.35076MR2835997DOI10.1016/j.jfa.2011.07.027
- Bereanu, C., Jebelean, P., Mawhin, J., 10.1007/s00526-011-0476-x, Calc. Var. Partial Differ. Equ. 46 (2013), 113-122. (2013) Zbl1262.35088MR3016504DOI10.1007/s00526-011-0476-x
- Bereanu, C., Jebelean, P., Mawhin, J., 10.1515/ans-2014-0204, Adv. Nonlinear Stud 14 (2014), 315-326. (2014) Zbl1305.35030MR3194356DOI10.1515/ans-2014-0204
- Bereanu, C., Jebelean, P., Şerban, C., Nontrivial solutions for a class of one-parameter problems with singular -Laplacian, Ann. Univ. Buchar., Math. Ser. 3(61) (2012), 155-162. (2012) Zbl1274.35078MR3034970
- Bereanu, C., Jebelean, P., Torres, P. J., 10.1016/j.jfa.2012.10.010, J. Funct. Anal. 264 (2013), 270-287. (2013) MR2995707DOI10.1016/j.jfa.2012.10.010
- Bereanu, C., Jebelean, P., Torres, P. J., 10.1016/j.jfa.2013.04.006, J. Funct. Anal. 265 (2013), 644-659. (2013) Zbl1285.35051MR3062540DOI10.1016/j.jfa.2013.04.006
- Bereanu, C., Torres, P. J., 10.1090/S0002-9939-2011-11101-8, Proc. Am. Math. Soc. 140 (2012), 2713-2719. (2012) Zbl1275.34057MR2910759DOI10.1090/S0002-9939-2011-11101-8
- Brézis, H., Positive solutions of nonlinear elliptic equations in the case of critical Sobolev exponent, Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vol. III, 129-146, Res. Notes Math. 70, Pitman, Boston, 1982. Zbl0514.35031MR0670270
- Brézis, H., Mawhin, J., Periodic solutions of the forced relativistic pendulum, Differ. Integral Equ. 23 (2010), 801-810. (2010) Zbl1240.34207MR2675583
- Brézis, H., Nirenberg, L., 10.1002/cpa.3160360405, Commun. Pure Appl. Math. 36 (1983), 437-477. (1983) Zbl0541.35029MR0709644DOI10.1002/cpa.3160360405
- Coelho, I., Corsato, C., Obersnel, F., Omari, P., 10.1515/ans-2012-0310, Adv. Nonlinear Stud. 12 (2012), 621-638. (2012) Zbl1263.34028MR2976056DOI10.1515/ans-2012-0310
- Coelho, I., Corsato, C., Rivetti, S., Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol. Methods Nonlinear Anal (to appear).
- Corsato, C., Obersnel, F., Omari, P., Rivetti, S., 10.1016/j.jmaa.2013.04.003, J. Math. Anal. Appl. 405 (2013), 227-239. (2013) MR3053503DOI10.1016/j.jmaa.2013.04.003
- Hammerstein, A., 10.1007/BF02547519, Acta Math. 54 (1930), 117-176 German. (1930) MR1555304DOI10.1007/BF02547519
- Mawhin, J., Semicoercive monotone variational problems, Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118-130. (1987) MR0938142
- Mawhin, J., 10.3934/dcds.2012.32.4015, Discrete Contin. Dyn. Syst. 32 (2012), 4015-4026. (2012) Zbl1260.34076MR2945817DOI10.3934/dcds.2012.32.4015
- Mawhin, J., Jr., J. R. Ward, Willem, M., 10.1007/BF00251362, Arch. Ration. Mech. Anal. 95 (1986), 269-277. (1986) Zbl0656.35044MR0853968DOI10.1007/BF00251362
- Mawhin, J., Willem, M., 10.1016/0022-0396(84)90180-3, J. Differ. Equations 52 (1984), 264-287. (1984) Zbl0557.34036MR0741271DOI10.1016/0022-0396(84)90180-3
- Pohožaev, S. I., On the eigenfunctions of the equation , Russian Dokl. Akad. Nauk SSSR 165 (1965), 36-39. (1965) MR0192184
- Rabinowitz, P. H., On a class of functionals invariant under a action, Trans. Am. Math. Soc. 310 (1988), 303-311. (1988) MR0965755
- Szulkin, A., 10.1016/S0294-1449(16)30389-4, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986), 77-109. (1986) Zbl0612.58011MR0837231DOI10.1016/S0294-1449(16)30389-4
- Willem, M., Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications 24 Birkhäuser, Boston (1996). (1996) Zbl0856.49001MR1400007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.