Page 1

Displaying 1 – 3 of 3

Showing per page

Liouville-type theorems and asymptotic behavior of nodal radial solutions of semilinear heat equations

Thomas Bartsch, Peter Poláčik, Pavol Quittner (2011)

Journal of the European Mathematical Society

We prove a Liouville type theorem for sign-changing radial solutions of a subcritical semilinear heat equation u t = Δ u + u p - 1 u . We use this theorem to derive a priori bounds, decay estimates, and initial and final blow-up rates for radial solutions of rather general semilinear parabolic equations whose nonlinearities have a subcritical polynomial growth. Further consequences on the existence of steady states and time-periodic solutions are also shown.

Nonlinear boundary value problems involving the extrinsic mean curvature operator

Jean Mawhin (2014)

Mathematica Bohemica

The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type · v 1 - | v | 2 = f ( | x | , v ) in B R , u = 0 on B R , where B R is the open ball of center 0 and radius R in n , and f is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.

Currently displaying 1 – 3 of 3

Page 1