Sur la cohomologie feuilletée

Aziz El Kacimi-Alaoui

Compositio Mathematica (1983)

  • Volume: 49, Issue: 2, page 195-215
  • ISSN: 0010-437X

How to cite

top

El Kacimi-Alaoui, Aziz. "Sur la cohomologie feuilletée." Compositio Mathematica 49.2 (1983): 195-215. <http://eudml.org/doc/89610>.

@article{ElKacimi1983,
author = {El Kacimi-Alaoui, Aziz},
journal = {Compositio Mathematica},
keywords = {differential along the leaves; sheaf of germs of basic p-forms; invariant by integrable homotopy; Mayer-Vietoris theorem; cohomology for foliated manifolds},
language = {fre},
number = {2},
pages = {195-215},
publisher = {Martinus Nijhoff Publishers},
title = {Sur la cohomologie feuilletée},
url = {http://eudml.org/doc/89610},
volume = {49},
year = {1983},
}

TY - JOUR
AU - El Kacimi-Alaoui, Aziz
TI - Sur la cohomologie feuilletée
JO - Compositio Mathematica
PY - 1983
PB - Martinus Nijhoff Publishers
VL - 49
IS - 2
SP - 195
EP - 215
LA - fre
KW - differential along the leaves; sheaf of germs of basic p-forms; invariant by integrable homotopy; Mayer-Vietoris theorem; cohomology for foliated manifolds
UR - http://eudml.org/doc/89610
ER -

References

top
  1. [1] T. Duchamp: Deformation theory of holomorphic foliations. J. Diff. Geom. 14 (1979) 317-337. Zbl0451.57015MR594704
  2. [2] C. Godbillon: Eléments de topologie algébrique. Hermann, Paris (1971). Zbl0218.55001MR301725
  3. [3] R. Godement: Topologie algébrique et théorie des faisceaux. Hermann, Paris (1958). Zbl0080.16201MR102797
  4. [4] A. Haefliger: Homotopy, Integrability. Amsterdam, Springer Lectures Notes, N° 197. Zbl0215.52403MR285027
  5. [5] A. Haefliger: Some remarks on foliations with minimal leaves. J. Diff. Geom. 15, n° 2 (1980). Zbl0444.57016MR614370
  6. [6] S.R. Hamilton: Deformation theory of foliations. Preprint Cornell University. 
  7. [7] J.L. Heitsch: A cohomology of foliated manifolds. Comment. Math. Helviti50 (1975) 197-218. Zbl0311.57014MR372877
  8. [8] K. Kodaira and D.C. Spencer: Multifoliate Structures. Ann. Math. 74 (1961) 52-100. Zbl0123.16401MR148086
  9. [9] P. Molino: Propriétés cohomologiques et propriétés topologiques des feuilletages à connexion transverse projetable. Topology12 (1973). Zbl0269.57014MR353332
  10. [10] G. Reeb: Sur certaines propriétés topologiques des variétés feuilletées. Act. Sci. et Ind.Hermann, Paris (1952). Zbl0049.12602MR55692
  11. [11] B.L. Reinhart: Harmonic integrals on almost product manifolds. Trans. A.M.S. 88 (1958) 243-276. Zbl0081.31602MR104937
  12. [12] G. De Rham: Variétés différentiables. Act. Sci. et Ind. Hermann, Paris. Zbl0284.58001
  13. [13] C. Roger: Méthodes homotopiques et cohomologiques en théorie des feuilletages. Thèse, Orsay (1976). 
  14. [14] K.F. Roth and Davenport: Rational approximations of algebraic numbers. Mathematika2 (1955) 160-167. Zbl0066.29302MR72182
  15. [15] K.S. Sarkaria: The de Rham cohomology of foliated manifolds, thesis, SUNY, Stony Brook, 1974. 
  16. [16] S. Sternberg: Local C'' transformations of the real line. Duke. Math. J. 24 (1957) 97-102. Zbl0077.06201MR102581
  17. [17] D. Sullivan: Cycles for the dynamical study of foliated manifolds and complex manifolds. Inventiones Math.36 (1978) 225-255. Zbl0335.57015MR433464
  18. [18] I. Vaisman: Cohomology and differential forms. Dekker (1973). MR341344
  19. [19] I. Vaisman: Variétés riemanniennes feuilletées. Czechosl. Math. J.21 (1971) 46-75. Zbl0212.54202MR287572
  20. [20] I. Vaisman: Sur la cohomologie des variétés riemanniennes feuilletées. C.R. Acad. Sc. Paris, t. 268, Séries A, p. 720-723. Zbl0175.20302MR248686

NotesEmbed ?

top

You must be logged in to post comments.