Displaying similar documents to “A generalization of the finiteness problem of the local cohomology modules”

Some results on the local cohomology of minimax modules

Ahmad Abbasi, Hajar Roshan-Shekalgourabi, Dawood Hassanzadeh-Lelekaami (2014)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring with identity and I an ideal of R . It is shown that, if M is a non-zero minimax R -module such that dim Supp H I i ( M ) 1 for all i , then the R -module H I i ( M ) is I -cominimax for all i . In fact, H I i ( M ) is I -cofinite for all i 1 . Also, we prove that for a weakly Laskerian R -module M , if R is local and t is a non-negative integer such that dim Supp H I i ( M ) 2 for all i < t , then Ext R j ( R / I , H I i ( M ) ) and Hom R ( R / I , H I t ( M ) ) are weakly Laskerian for all i < t and all j 0 . As a consequence, the set of associated primes of H I i ( M ) is finite for all i 0 , whenever...

Some results on the cofiniteness of local cohomology modules

Sohrab Sohrabi Laleh, Mir Yousef Sadeghi, Mahdi Hanifi Mostaghim (2012)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring, 𝔞 an ideal of R , M an R -module and t a non-negative integer. In this paper we show that the class of minimax modules includes the class of 𝒜ℱ modules. The main result is that if the R -module Ext R t ( R / 𝔞 , M ) is finite (finitely generated), H 𝔞 i ( M ) is 𝔞 -cofinite for all i < t and H 𝔞 t ( M ) is minimax then H 𝔞 t ( M ) is 𝔞 -cofinite. As a consequence we show that if M and N are finite R -modules and H 𝔞 i ( N ) is minimax for all i < t then the set of associated prime ideals of the generalized local cohomology...

Artinian cofinite modules over complete Noetherian local rings

Behrouz Sadeghi, Kamal Bahmanpour, Jafar A&#039;zami (2013)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a complete Noetherian local ring, I an ideal of R and M a nonzero Artinian R -module. In this paper it is shown that if 𝔭 is a prime ideal of R such that dim R / 𝔭 = 1 and ( 0 : M 𝔭 ) is not finitely generated and for each i 2 the R -module Ext R i ( M , R / 𝔭 ) is of finite length, then the R -module Ext R 1 ( M , R / 𝔭 ) is not of finite length. Using this result, it is shown that for all finitely generated R -modules N with Supp ( N ) V ( I ) and for all integers i 0 , the R -modules Ext R i ( N , M ) are of finite length, if and only if, for all finitely generated R -modules...