State elimination for nonlinear neutral state-space systems
Kybernetika (2014)
- Volume: 50, Issue: 4, page 473-490
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHalás, Miroslav, and Bisták, Pavol. "State elimination for nonlinear neutral state-space systems." Kybernetika 50.4 (2014): 473-490. <http://eudml.org/doc/261989>.
@article{Halás2014,
abstract = {The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well.},
author = {Halás, Miroslav, Bisták, Pavol},
journal = {Kybernetika},
keywords = {nonlinear time-delay systems; neutral systems; input-output representation; linear algebraic methods; Gröbner bases; nonlinear time-delay systems; neutral systems; input-output representation; linear algebraic methods; Gröbner bases},
language = {eng},
number = {4},
pages = {473-490},
publisher = {Institute of Information Theory and Automation AS CR},
title = {State elimination for nonlinear neutral state-space systems},
url = {http://eudml.org/doc/261989},
volume = {50},
year = {2014},
}
TY - JOUR
AU - Halás, Miroslav
AU - Bisták, Pavol
TI - State elimination for nonlinear neutral state-space systems
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 4
SP - 473
EP - 490
AB - The problem of finding an input-output representation of a nonlinear state space system, usually referred to as the state elimination, plays an important role in certain control problems. Though, it has been shown that such a representation, at least locally, always exists for both the systems with and without delays, it might be a neutral input-output differential equation in the former case, even when one starts with a retarded system. In this paper the state elimination is therefore extended further to nonlinear neutral state-space systems, and it is shown that also in such a case an input-output representation, at least locally, always exists. In general, it represents a neutral system again. Computational aspects related to the state elimination problem are discussed as well.
LA - eng
KW - nonlinear time-delay systems; neutral systems; input-output representation; linear algebraic methods; Gröbner bases; nonlinear time-delay systems; neutral systems; input-output representation; linear algebraic methods; Gröbner bases
UR - http://eudml.org/doc/261989
ER -
References
top- Anguelova, M., Wennberg, B., 10.1016/j.automatica.2007.10.013, Automatica 44 (2008), 1373-1378. Zbl1283.93084MR2531805DOI10.1016/j.automatica.2007.10.013
- Becker, T., Weispfenning, V., Gröbner Bases., Springer-Verlag, New York 1993. Zbl0772.13010MR1213453
- Buchberger, B., Winkler, F., Gröbner Bases and Applications., Cambridge University Press, Cambridge 1998. Zbl0883.00014MR1699811
- Cohn, P. M., Free Rings and Their Relations., Academic Press, London 1985. Zbl0659.16001MR0800091
- Conte, G., Moog, C. H., Perdon, A. M., Algebraic Methods for Nonlinear Control Systems. Theory and Applications. Second edition., Communications and Control Engineering. Springer-Verlag, London 2007. MR2305378
- Cox, D., Little, J., O'Shea, D., Ideals, Varieties, and Algorithms., Springer-Verlag, New York 2007. Zbl1118.13001MR2290010
- Diop, S., 10.1007/BF02551378, Math. Contr. Signals Syst. 4 (1991), 72-86. Zbl0727.93025MR1082853DOI10.1007/BF02551378
- Glad, S. T., Nonlinear regulators and Ritt's remainder algorithm., In: Analysis of Controlled Dynamical Systems (B. Bournard, B. Bride, J. P. Gauthier, and I. Kupka, eds.), Progress in systems and control theory 8, Birkhäuser, Boston 1991, pp. 224-232 Zbl0794.93042MR1131996
- Glumineau, A., Moog, C. H., Plestan, F., 10.1109/9.489283, IEEE Trans. Automat. Control 41 (1996), 598-603. Zbl0851.93018MR1385333DOI10.1109/9.489283
- Halás, M., 10.1016/j.automatica.2007.09.008, Automatica 44 (2008), 1181-1190. Zbl1283.93077MR2531783DOI10.1016/j.automatica.2007.09.008
- Halás, M., Nonlinear time-delay systems: a polynomial approach using Ore algebras., In: Topics in Time-Delay Systems: Analysis, Algorithms and Control (J. J. Loiseau, W. Michiels, S. Niculescu, and R. Sipahi, eds.), Lecture Notes in Control and Information Sciences, Springer, 2009. MR2573747
- Halás, M., Computing an input-output representation of a neutral state-space system., In: IFAC Workshop on Time Delay Systems, Grenoble 2013.
- Halás, M., Anguelova, M., 10.1016/j.automatica.2012.11.027, Automatica 49 (2013) 561-567. Zbl1259.93066MR3004725DOI10.1016/j.automatica.2012.11.027
- Halás, M., Kotta, Ü., 10.1080/00207179.2011.651748, Internat. J. Control 85 (2012), 320-331. Zbl1282.93078MR2881269DOI10.1080/00207179.2011.651748
- Halás, M., Kotta, Ü., Moog, C. H., Transfer function approach to the model matching problem of nonlinear systems., In: 17th IFAC World Congress, Seoul 2008.
- Halás, M., Moog, C. H., A polynomial solution to the model matching problem of nonlinear time-delay systems., In: European Control Conference, Budapest 2009.
- Huba, M., 10.1016/j.jprocont.2013.09.007, J. Process Control 23 (2013), 1379-1400. DOI10.1016/j.jprocont.2013.09.007
- Kotta, Ü., Bartosiewicz, Z., Pawluszewicz, E., Wyrwas, M., 10.1016/j.sysconle.2009.04.006, Syst. Control Lett. 58 (2009), 646-651. Zbl1184.93025MR2554398DOI10.1016/j.sysconle.2009.04.006
- Kotta, Ü., Kotta, P., Halás, M., Reduction and transfer equivalence of nonlinear control systems: unification and extension via pseudo-linear algebra., Kybernetika 46 (2010), 831-849. Zbl1205.93027MR2778925
- Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M., The structure of nonlinear time-delay systems., Kybernetika 36 (2000), 53-62. Zbl1249.93102MR1760888
- Márquez-Martínez, L. A., Moog, C. H., Velasco-Villa, M., Observability and observers for nonlinear systems with time delays., Kybernetika 38 (2002), 445-456. Zbl1265.93060MR1937139
- Ohtsuka, T., 10.1109/TAC.2005.847062, IEEE Trans. Automat. Control 50 (2005), 607-618. MR2141563DOI10.1109/TAC.2005.847062
- Ore, O., 10.2307/1968245, Ann. Math. 32 (1931), 463-477. Zbl0001.26601MR1503010DOI10.2307/1968245
- Ore, O., 10.2307/1968173, Ann. Math. 34(1933), 480-508. Zbl0007.15101MR1503119DOI10.2307/1968173
- Picard, P., Lafay, J. F., Kučera, V., 10.1016/S0005-1098(98)00177-0, Automatica 34 (1998), 183-191. Zbl0937.93007MR1609823DOI10.1016/S0005-1098(98)00177-0
- Rudolph, J., Viewing input-output system equivalence from differential algebra., J. Math. Systems Estim. Control 4 (1994), 353-383. Zbl0806.93012MR1298841
- Walther, U., Georgiou, T. T., Tannenbaum, A., 10.1109/9.917655, IEEE Trans. Automat. Control 46 (2001), 534-540. Zbl0998.49023MR1822964DOI10.1109/9.917655
- Xia, X., Márquez-Martínez, L. A., Zagalak, P., Moog, C. H., 10.1016/S0005-1098(02)00051-1, Automatica 38 (2002), 1549-1555. MR2134034DOI10.1016/S0005-1098(02)00051-1
- Zhang, J., Xia, X., Moog, C. H., 10.1109/TAC.2005.863497, IEEE Trans. Automat. Control 51 (2006), 371-375. MR2201731DOI10.1109/TAC.2005.863497
- Zheng, Y., Willems, J., Zhang, C., 10.1109/9.964691, IEEE Trans. Automat. Control 46 (2001), 1782-1788. Zbl1175.93045MR1864751DOI10.1109/9.964691
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.