Observability and observers for nonlinear systems with time delays
Luis Alejandro Márquez-Martínez; Claude H. Moog; Martín Velasco-Villa
Kybernetika (2002)
- Volume: 38, Issue: 4, page [445]-456
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topMárquez-Martínez, Luis Alejandro, Moog, Claude H., and Velasco-Villa, Martín. "Observability and observers for nonlinear systems with time delays." Kybernetika 38.4 (2002): [445]-456. <http://eudml.org/doc/33594>.
@article{Márquez2002,
abstract = {Basic properties on linearization by output injection are investigated in this paper. A special structure is sought which is linear up to a suitable output injection and under a suitable change of coordinates. It is shown how an observer may be designed using theory available for linear time delay systems.},
author = {Márquez-Martínez, Luis Alejandro, Moog, Claude H., Velasco-Villa, Martín},
journal = {Kybernetika},
keywords = {nonlinear control system; time delay; observability; nonlinear control system; time delay; observability},
language = {eng},
number = {4},
pages = {[445]-456},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Observability and observers for nonlinear systems with time delays},
url = {http://eudml.org/doc/33594},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Márquez-Martínez, Luis Alejandro
AU - Moog, Claude H.
AU - Velasco-Villa, Martín
TI - Observability and observers for nonlinear systems with time delays
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 4
SP - [445]
EP - 456
AB - Basic properties on linearization by output injection are investigated in this paper. A special structure is sought which is linear up to a suitable output injection and under a suitable change of coordinates. It is shown how an observer may be designed using theory available for linear time delay systems.
LA - eng
KW - nonlinear control system; time delay; observability; nonlinear control system; time delay; observability
UR - http://eudml.org/doc/33594
ER -
References
top- Aggoune W., Bouteayeb, M., Darouach M., Observers design for a class of nonlinear systems with time-varying delay, In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
- Antoniades C., Christofides D., Robust control of nonlinear time-delay systems, Internat. J. Math. Comp. Sci. 9 (1999), 4, 811–837 (1999) Zbl0952.93042MR1736672
- Bocharov G. A., Rihan F. A., 10.1016/S0377-0427(00)00468-4, J. Comput. Appl. Math. 125 (2000), 183–199 Zbl0969.65124MR1803191DOI10.1016/S0377-0427(00)00468-4
- Conte G., Perdon A. M., 10.1137/S0363012992235638, SIAM J. Control Optim. 33 (1995), 3, 750–764 (1995) Zbl0831.93011MR1327237DOI10.1137/S0363012992235638
- Fliess M., Mounier H., Controllability and observability of linear delay systems: an algebraic approach, ESIAM: Control, Optimization & Calculus of Variations 3 (1998), 301–314 (1998) Zbl0908.93013MR1644427
- Germani A., Manes, C., Pepe P., Linearization of input–output mapping for nonlinear delay systems via static state feedback, In: Symposium on Modeling Analysis & Sim., Lille 1997, pp. 599–602 (1997)
- Germani A., Manes, C., Pepe P., Local asymptotic stability for nonlinear state feedback delay systems, In: Proc. 6th IEEE Mediteranean Conference on Control Systems, Alghero 1998 MR1760886
- Hale J., Theory of Functional Differential Equations, Springer–Verlag, Berlin 1977 Zbl1092.34500MR0508721
- Hale J., Verduyn S. M., Introduction to Functional Differential Equations, Springer–Verlag, Berlin 1993 Zbl0787.34002MR1243878
- He J.-B., Wang Q.-G., Lee T.-H., 10.1016/S0009-2509(99)00512-6, Chem. Engrg. Sci. 55 (2000), 2429–2439 DOI10.1016/S0009-2509(99)00512-6
- Kolmanovskii V. B., Nosov V. R., Stability of Functional Differential Equations, Academic Press, London 1986 Zbl0593.34070MR0860947
- Kolmanovskii V. B., Richard J. P., Tchangani A. Ph., Some model transformations for the stability study of linear systems with delay, In: Preprints of the 1st IFAC Internat. Workshop on Linear Time-Delay Systems (J. M. Dion, L. Dugard, and M. Fliess, eds.), Lag 1998, pp. 75–80 (1998) MR1622951
- Krener A., Isidori A., Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47–52 (1983) Zbl0524.93030MR0713426
- Krener A., Respondek W., 10.1137/0323016, SIAM J. Control Optim. 23 (1985), 2, 197–216 (1985) Zbl0569.93035MR0777456DOI10.1137/0323016
- Lee E. B., Olbrot A., 10.1080/00207178108922582, Internat. J. Control 34 (1981), 6, 1061–1078 (1981) Zbl0531.93015MR0643872DOI10.1080/00207178108922582
- Lee Y., Lee, J., Park S., 10.1016/S0009-2509(00)00005-1, Chem. Engrg. Sci. 55 (2000), 3481–3493 DOI10.1016/S0009-2509(00)00005-1
- Malek–Zavarei M., Jamshidi M., Time–Delay Systems, Analysis, Optimization and Applications. (North Holland Systems and Control Series 9.) Elsevier, New York 1987 Zbl0658.93001MR0930450
- Márquez–Martínez L. A., Moog C. H., New results on the analysis and control of nonlinear time-delay systems, In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
- Márquez–Martínez L. A., Moog C. H., Accessibility and Feedback Linearization of Nonlinear Time-Delay Systems, Technical Report, IRCCyN 2000
- Márquez–Martínez L. A., Moog C. H., Accessibility of nonlinear time-delay systems, In: Proc. 40th IEEE Conference on Decision and Control 2001
- Moog C. H., Castro–Linares R., Velasco–Villa, M., Márquez–Martínez L. A., 10.1109/9.839954, IEEE Trans. Automat. Control 48 (2000), 2, 305–309 DOI10.1109/9.839954
- Picard P., Sur l’observabilité et la commande des systèmes linéaires à retards modelisés sur un anneau, Ph.D. Thesis. Université de Nantes 1996
- Plestan F., Linéarisation par injection d’entrée–sortie généralisée et synthèse d’observateurs, Ph.D. Thesis. Université de Nantes / Ecole Centrale de Nantes 1995
- Xia X., Moog C. H., I/O linearization of nonlinear systems by output feedback, In: Proc. 35th IEEE Conference on Decision and Control, Kobe 1996
Citations in EuDML Documents
top- Miroslav Halás, Pavol Bisták, State elimination for nonlinear neutral state-space systems
- Branislav Rehák, Sum-of-squares based observer design for polynomial systems with a known fixed time delay
- Amel Benabdallah, A separation principle for the stabilization of a class of time delay nonlinear systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.