The fundamental constituents of iteration digraphs of finite commutative rings
Jizhu Nan; Yangjiang Wei; Gaohua Tang
Czechoslovak Mathematical Journal (2014)
- Volume: 64, Issue: 1, page 199-208
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topNan, Jizhu, Wei, Yangjiang, and Tang, Gaohua. "The fundamental constituents of iteration digraphs of finite commutative rings." Czechoslovak Mathematical Journal 64.1 (2014): 199-208. <http://eudml.org/doc/262035>.
@article{Nan2014,
abstract = {For a finite commutative ring $R$ and a positive integer $k\geqslant 2$, we construct an iteration digraph $G(R, k)$ whose vertex set is $R$ and for which there is a directed edge from $a\in R$ to $b\in R$ if $b=a^k$. Let $R=R_1\oplus \ldots \oplus R_s$, where $s>1$ and $R_i$ is a finite commutative local ring for $i\in \lbrace 1, \ldots , s\rbrace $. Let $N$ be a subset of $\lbrace R_1, \dots , R_s\rbrace $ (it is possible that $N$ is the empty set $\emptyset $). We define the fundamental constituents $G_N^*(R, k)$ of $G(R, k)$ induced by the vertices which are of the form $\lbrace (a_1, \dots , a_s)\in R\colon a_i\in \{\rm D\}(R_i)$ if $R_i\in N$, otherwise $a_i\in \{\rm U\}(R_i), i=1,\ldots ,s\rbrace ,$ where U$(R)$ denotes the unit group of $R$ and D$(R)$ denotes the zero-divisor set of $R$. We investigate the structure of $G_N^*(R, k)$ and state some conditions for the trees attached to cycle vertices in distinct fundamental constituents to be isomorphic.},
author = {Nan, Jizhu, Wei, Yangjiang, Tang, Gaohua},
journal = {Czechoslovak Mathematical Journal},
keywords = {iteration digraph; fundamental constituent; digraphs product; iteration digraph; fundamental constituent; digraphs product},
language = {eng},
number = {1},
pages = {199-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The fundamental constituents of iteration digraphs of finite commutative rings},
url = {http://eudml.org/doc/262035},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Nan, Jizhu
AU - Wei, Yangjiang
AU - Tang, Gaohua
TI - The fundamental constituents of iteration digraphs of finite commutative rings
JO - Czechoslovak Mathematical Journal
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 1
SP - 199
EP - 208
AB - For a finite commutative ring $R$ and a positive integer $k\geqslant 2$, we construct an iteration digraph $G(R, k)$ whose vertex set is $R$ and for which there is a directed edge from $a\in R$ to $b\in R$ if $b=a^k$. Let $R=R_1\oplus \ldots \oplus R_s$, where $s>1$ and $R_i$ is a finite commutative local ring for $i\in \lbrace 1, \ldots , s\rbrace $. Let $N$ be a subset of $\lbrace R_1, \dots , R_s\rbrace $ (it is possible that $N$ is the empty set $\emptyset $). We define the fundamental constituents $G_N^*(R, k)$ of $G(R, k)$ induced by the vertices which are of the form $\lbrace (a_1, \dots , a_s)\in R\colon a_i\in {\rm D}(R_i)$ if $R_i\in N$, otherwise $a_i\in {\rm U}(R_i), i=1,\ldots ,s\rbrace ,$ where U$(R)$ denotes the unit group of $R$ and D$(R)$ denotes the zero-divisor set of $R$. We investigate the structure of $G_N^*(R, k)$ and state some conditions for the trees attached to cycle vertices in distinct fundamental constituents to be isomorphic.
LA - eng
KW - iteration digraph; fundamental constituent; digraphs product; iteration digraph; fundamental constituent; digraphs product
UR - http://eudml.org/doc/262035
ER -
References
top- Bini, G., Flamini, F., Finite Commutative Rings and Their Applications, The Kluwer International Series in Engineering and Computer Science 680 Kluwer Academic Publishers, Dordrecht (2002). (2002) Zbl1095.13032MR1919698
- R. W. Gilmer, Jr., 10.2307/2373134, Am. J. Math. 85 (1963), 447-452. (1963) Zbl0113.26501MR0154884DOI10.2307/2373134
- Lucheta, C., Miller, E., Reiter, C., Digraphs from powers modulo , Fibonacci Q. 34 (1996), 226-239. (1996) Zbl0855.05067MR1390409
- Raghavendran, R., Finite associative rings, Compos. Math. 21 (1969), 195-229. (1969) Zbl0179.33602MR0246905
- Somer, L., Křížek, M., On semiregular digraphs of the congruence , Commentat. Math. Univ. Carol. 48 (2007), 41-58. (2007) MR2338828
- Somer, L., Křížek, M., 10.1007/s10587-011-0079-x, Czech. Math. J. 61 (2011), 337-358. (2011) Zbl1249.11006MR2905408DOI10.1007/s10587-011-0079-x
- Wei, Y., Tang, G., Su, H., The square mapping graphs of finite commutative rings, Algebra Colloq. 19 (2012), 569-580. (2012) Zbl1260.13032MR3073410
- Wilson, B., Power digraphs modulo , Fibonacci Q. 36 (1998), 229-239. (1998) Zbl0936.05049MR1627384
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.