On semiregular digraphs of the congruence
Commentationes Mathematicae Universitatis Carolinae (2007)
- Volume: 48, Issue: 1, page 41-58
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topReferences
top- Křížek M., Luca F., Somer L., 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer New York (2001). (2001) Zbl1010.11002MR1866957
- Lucheta C., Miller E., Reiter C., Digraphs from powers modulo , Fibonacci Quart. (1996), 34 226-239. (1996) Zbl0855.05067MR1390409
- Niven I., Zuckerman H.S., Montgomery H.L., An Introduction to the Theory of Numbers, fifth edition, John Wiley & Sons, New York (1991). (1991) Zbl0742.11001MR1083765
- Somer L., Křížek M., On a connection of number theory with graph theory, Czechoslovak Math. J. 54 (2004), 465-485. (2004) Zbl1080.11004MR2059267
- Somer L., Křížek M., Structure of digraphs associated with quadratic congruences with composite moduli, Discrete Math. 306 (2006), 2174-2185. (2006) Zbl1161.05323MR2255611
- Wilson B., Power digraphs modulo , Fibonacci Quart. (1998), 36 229-239. (1998) Zbl0936.05049MR1627384
Citations in EuDML Documents
top- Amplify Sawkmie, Madan Mohan Singh, On the tree structure of the power digraphs modulo
- Uzma Ahmad, Syed Husnine, Characterization of power digraphs modulo
- Uzma Ahmad, Husnine Syed, On the heights of power digraphs modulo
- Jizhu Nan, Yangjiang Wei, Gaohua Tang, The fundamental constituents of iteration digraphs of finite commutative rings
- Uzma Ahmad, Muqadas Moeen, The classification of finite groups by using iteration digraphs
- Lawrence Somer, Michal Křížek, The structure of digraphs associated with the congruence