On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems

Balázs Kovács

Applications of Mathematics (2014)

  • Volume: 59, Issue: 5, page 489-508
  • ISSN: 0862-7940

Abstract

top
Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate solution of the involved auxiliary problem.

How to cite

top

Kovács, Balázs. "On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems." Applications of Mathematics 59.5 (2014): 489-508. <http://eudml.org/doc/262042>.

@article{Kovács2014,
abstract = {Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate solution of the involved auxiliary problem.},
author = {Kovács, Balázs},
journal = {Applications of Mathematics},
keywords = {a posteriori error estimation; quasilinear elliptic problem; numerical experiment; a posteriori error estimation; quasilinear elliptic problem; numerical experiment},
language = {eng},
number = {5},
pages = {489-508},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems},
url = {http://eudml.org/doc/262042},
volume = {59},
year = {2014},
}

TY - JOUR
AU - Kovács, Balázs
TI - On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems
JO - Applications of Mathematics
PY - 2014
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 59
IS - 5
SP - 489
EP - 508
AB - Karátson and Korotov developed a sharp upper global a posteriori error estimator for a large class of nonlinear problems of elliptic type, see J. Karátson, S. Korotov (2009). The goal of this paper is to check its numerical performance, and to demonstrate the efficiency and accuracy of this estimator on the base of quasilinear elliptic equations of the second order. The focus will be on the technical and numerical aspects and on the components of the error estimation, especially on the adequate solution of the involved auxiliary problem.
LA - eng
KW - a posteriori error estimation; quasilinear elliptic problem; numerical experiment; a posteriori error estimation; quasilinear elliptic problem; numerical experiment
UR - http://eudml.org/doc/262042
ER -

References

top
  1. Ainsworth, M., Oden, J. T., A Posteriori Error Estimation in Finite Element Analysis, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts Chichester, Wiley (2000). (2000) Zbl1008.65076MR1885308
  2. Axelsson, O., Maubach, J., 10.1016/0045-7825(88)90095-3, Comput. Methods Appl. Mech. Eng. 71 (1988), 41-67. (1988) Zbl0673.65068MR0967153DOI10.1016/0045-7825(88)90095-3
  3. Becker, R., Rannacher, R., A feed-back approach to error control in finite element methods: Basic analysis and examples, East-West J. Numer. Math. 4 (1996), 237-264. (1996) Zbl0868.65076MR1430239
  4. Brezinski, C., 10.1023/A:1025551602679, International Conference on Numerical Algorithms, Vol. I (Marrakesh, 2001). Numer. Algorithms 33 123-135 (2003). (2003) Zbl1030.65053MR2005557DOI10.1023/A:1025551602679
  5. Faragó, I., Karátson, J., Numerical Solution of Nonlinear Elliptic Problems via Preconditioning Operators. Theory and Applications, Advances in Computation: Theory and Practice 11 Nova Science Publishers, Huntington (2002). (2002) Zbl1030.65117MR2106499
  6. Faragó, I., Karátson, J., 10.1016/S0898-1221(01)00220-6, Numerical Methods and Computational Mechanics (Miskolc, 1998). Comput. Math. Appl. 42 1043-1053 (2001). (2001) Zbl0987.65121MR1851224DOI10.1016/S0898-1221(01)00220-6
  7. Han, W., A Posteriori Error Analysis via Duality Theory. With Applications in Modeling and Numerical Approximations, Advances in Mechanics and Mathematics 8 Springer, New York (2005). (2005) Zbl1081.65065MR2101057
  8. Hannukainen, A., Korotov, S., Techniques for a posteriori error estimation in terms of linear functionals for elliptic type boundary value problems, Far East J. Appl. Math. 21 289-304 (2005). (2005) Zbl1092.65097MR2216003
  9. Hlaváček, I., Křížek, M., On a superconvergent finite element scheme for elliptic systems, I. Dirichlet boundary condition, Apl. Mat. 32 131-154 (1987). (1987) Zbl0622.65097MR0885758
  10. Karátson, J., 10.1016/j.jmaa.2008.05.053, J. Math. Anal. Appl. 346 170-176 (2008). (2008) Zbl1152.47047MR2428281DOI10.1016/j.jmaa.2008.05.053
  11. Karátson, J., Faragó, I., 10.1137/S0036142901384277, SIAM J. Numer. Anal. (electronic) 41 1242-1262 (2003). (2003) Zbl1130.65309MR2034879DOI10.1137/S0036142901384277
  12. Karátson, J., Korotov, S., 10.1007/s10492-009-0020-x, Appl. Math., Praha 54 297-336 (2009). (2009) Zbl1212.65249MR2520833DOI10.1007/s10492-009-0020-x
  13. Karátson, J., Kovács, B., 10.1016/j.camwa.2012.04.021, Comput. Math. Appl. 65 (2013), 449-459. (2013) MR3008551DOI10.1016/j.camwa.2012.04.021
  14. Korotov, S., 10.1016/j.apm.2007.04.013, Appl. Math. Modelling 32 (2008), 1579-1586. (2008) Zbl1176.65126MR2412433DOI10.1016/j.apm.2007.04.013
  15. Kovács, B., 10.2478/s11533-011-0071-6, Cent. Eur. J. Math. 10 217-230 (2012). (2012) Zbl1247.65148MR2863792DOI10.2478/s11533-011-0071-6
  16. Mikhlin, S. G., Constants in Some Inequalities of Analysis. Transl. from the German, A Wiley-Interscience Publication John Wiley & Sons, Chichester (1986). (1986) Zbl0593.41001MR0853915
  17. Neittaanmäki, P., Repin, S., Reliable Methods for Computer Simulation. Error Control and a Posteriori Estimates, Studies in Mathematics and its Applications 33 Elsevier, Amsterdam (2004). (2004) Zbl1076.65093MR2095603
  18. Repin, S. I., 10.1007/BF02673600, J. Math. Sci., New York 99 927-935 (2000), Transl. from the Russian. Zap. Nauchn. Semin. POMI 243 (1997), 201-214. (1997) Zbl0904.65064MR1629741DOI10.1007/BF02673600
  19. Verfürth, R., A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner Series Advances in Numerical Mathematics John Wiley & Sons, Stuttgart, Chichester (1996). (1996) 
  20. Vladimirov, V. S., Equations of Mathematical Physics, Transl. from the Russian. Mir, Moskva (1984). (1984) MR0764399
  21. Zeidler, E., Nonlinear Functional Analysis and its Applications. III: Variational Methods and Optimization, Transl. from the German by Leo F. Boron Springer, New York (1985). (1985) Zbl0583.47051MR0768749

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.