On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition
Aplikace matematiky (1987)
- Volume: 32, Issue: 2, page 131-154
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan, and Křížek, Michal. "On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition." Aplikace matematiky 32.2 (1987): 131-154. <http://eudml.org/doc/15485>.
@article{Hlaváček1987,
abstract = {Second order elliptic systems with Dirichlet boundary conditions are solved by means of affine finite elements on regular uniform triangulations. A simple averagign scheme is proposed, which implies a superconvergence of the gradient. For domains with enough smooth boundary, a global estimate $O(h^\{3/2\})$ is proved in the $L^2$-norm. For a class of polygonal domains the global estimate $O(h^2)$ can be proven.},
author = {Hlaváček, Ivan, Křížek, Michal},
journal = {Aplikace matematiky},
keywords = {post-processing; averaged gradient; Galerkin method; system; finite elements; superconvergence; global estimate; elliptic systems; post-processing; averaged gradient; Galerkin method; system; finite elements; superconvergence; global estimate},
language = {eng},
number = {2},
pages = {131-154},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition},
url = {http://eudml.org/doc/15485},
volume = {32},
year = {1987},
}
TY - JOUR
AU - Hlaváček, Ivan
AU - Křížek, Michal
TI - On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition
JO - Aplikace matematiky
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 32
IS - 2
SP - 131
EP - 154
AB - Second order elliptic systems with Dirichlet boundary conditions are solved by means of affine finite elements on regular uniform triangulations. A simple averagign scheme is proposed, which implies a superconvergence of the gradient. For domains with enough smooth boundary, a global estimate $O(h^{3/2})$ is proved in the $L^2$-norm. For a class of polygonal domains the global estimate $O(h^2)$ can be proven.
LA - eng
KW - post-processing; averaged gradient; Galerkin method; system; finite elements; superconvergence; global estimate; elliptic systems; post-processing; averaged gradient; Galerkin method; system; finite elements; superconvergence; global estimate
UR - http://eudml.org/doc/15485
ER -
References
top- S. Agmon A. Douglis L. Nirenberg, 10.1002/cpa.3160170104, Comm. Pure Appl. Math. 17 (1964), 35-92. (1964) MR0162050DOI10.1002/cpa.3160170104
- A. B. Andreev, Superconvergence of the gradient for linear triangle elements for elliptic and parabolic equations, C. R. Acad. Bulgare Sci. 37 (1984), 293 - 296. (1984) Zbl0575.65106MR0758156
- I. Babuška A. Miller, The post-processing technique in the finite element method, Parts I-III, Internat. J. Numer. Methods Engrg. 20 (1984), 1085-1109, 1111-1129. (1984)
- C. M. Chen, Optimal points of the stresses for triangular linear element, Numer. Math. J. Chinese Univ. 2 (1980), 12-20. (1980) Zbl0534.73057MR0619174
- C. M. Chen, -interior estimates for finite element method on regular mesh, J. Comput. Math. 3 (1985), 1-7. (1985) Zbl0603.34024MR0815405
- P. G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, New York, Oxford, 1978. (1978) Zbl0383.65058MR0520174
- I. Hlaváček M. Hlaváček, On the existence and uniqueness of solutions and some variational principles in linear theories of elasticity with couple-stresses, Apl. Mat. 14 (1969), 387-410. (1969) MR0250537
- V. P. Iljin, Svojstva někotorych klassov differenciruemych funkcij mnogich peremennych, zadannych v n-mernoj oblasti, Trudy Mat. Inst. Steklov. 66 (1962), 227-363. (1962)
- M. Křížek P. Neittaanmäki, 10.1007/BF01379664, Numer. Math. 45 (1984), 105-116. (1984) MR0761883DOI10.1007/BF01379664
- M. Křížek P. Neittaanmäki, On Superconvergence techniques, Preprint n. 34, Univ. of Jyväskylä, 1984, 1 - 43 (to appear in Acta Appl. Math.). (1984) MR0900263
- N. Levine, 10.1093/imanum/5.4.407, IMA J. Numer. Anal. 5 (1985), 407-427. (1985) Zbl0584.65067MR0816065DOI10.1093/imanum/5.4.407
- Q. Lin J. Ch. Xu, Linear finite elements with high accuracy, J. Comput. Math. 3 (1985), 115-133. (1985) Zbl0577.65094MR0854355
- A. Louis, 10.1007/BF01396494, Numer. Math. 33 (1979), 43-53. (1979) Zbl0435.65090MR0545741DOI10.1007/BF01396494
- L. A. Oganesjan V. J. Rivkind L. A. Ruchovec, Variational-difference methods for the solution of elliptic equations. Part I, (Proc. Sem., Issue 5, Vilnius, 1973), Inst. of Phys. and Math., Vilnius, 1973, 3-389. (1973)
- L. A. Oganesjan L. A. Ruchovec, An investigation of the rate of convergence of variational-difference schemes for second order elliptic equations in a two-dimensional regions with smooth boundary, Ž. Vyčisl. Mat. i Mat. Fiz. 9 (1969), 1102-1120. (1969) MR0295599
- L. A. Oganesjan L. A. Ruchovec, Variational-difference methods for the solution of elliptic equations, Izd. Akad. Nauk Armjanskoi SSR, Jerevan, 1979. (1979)
- J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967. (1967) MR0227584
- J. Nečas I. Hlaváček, 10.1007/BF00249518, Arch. Rational Mech. Anal. 36 (1970), 305-334. (1970) MR0252844DOI10.1007/BF00249518
- J. Nečas I. Hlaváček, Mathematical theory of elastic and elasto-plastic bodies: an introduction, Elsevier, Amsterdam, Oxford, New York, 1981. (1981) MR0600655
- V. Thomée, High order local approximations to derivatives in the finite element method, Math. Соmр. 31 (1977), 652-660. (1977) MR0438664
- B. Westergren, Interior estimates for elliptic systems of difference equations, (Thesis). Univ. of Goteborg, 1982. (1982)
- Q. D. Zhu, Natural inner Superconvergence for the finite element method, (Proc. China-France Sympos. on the Finite Element method, Beijing, 1982), Science Press, Beijing, Gordon and Breach, New York, 1983, 935-960. (1982) MR0754041
- M. Zlámal, Superconvergence and reduced integration in the finite element method, Math. Соmр. 32 (1978), 663-685. (1978) MR0495027
Citations in EuDML Documents
top- Ivan Hlaváček, Michal Křížek, On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type
- Wei Chen, Michal Křížek, What is the smallest possible constant in Céa's lemma?
- Ivan Hlaváček, Michal Křížek, On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates
- Balázs Kovács, On the numerical performance of a sharp a posteriori error estimator for some nonlinear elliptic problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.