Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
Applications of Mathematics (2015)
- Volume: 60, Issue: 1, page 1-20
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topZhang, Tie Zhu, and Zhang, Shu Hua. "Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations." Applications of Mathematics 60.1 (2015): 1-20. <http://eudml.org/doc/262134>.
@article{Zhang2015,
abstract = {We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis.},
author = {Zhang, Tie Zhu, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; numerical experiments},
language = {eng},
number = {1},
pages = {1-20},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations},
url = {http://eudml.org/doc/262134},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Zhang, Tie Zhu
AU - Zhang, Shu Hua
TI - Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 1
EP - 20
AB - We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis.
LA - eng
KW - discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; numerical experiments
UR - http://eudml.org/doc/262134
ER -
References
top- Achchab, B., Achchab, S., Agouzal, A., 10.1002/num.20016, Numer. Methods Partial Differ. Equations 20 (2004), 919-932. (2004) Zbl1059.65097MR2092413DOI10.1002/num.20016
- Becker, R., Hansbo, P., Stenberg, R., 10.1051/m2an:2003023, M2AN, Math. Model. Numer. Anal. 37 (2003), 209-225. (2003) Zbl1047.65099MR1991197DOI10.1051/m2an:2003023
- Braess, D., Verfürth, R., 10.1137/S0036142994264079, SIAM J. Numer. Anal. 33 (1996), 2431-2444. (1996) Zbl0866.65071MR1427472DOI10.1137/S0036142994264079
- Burman, E., 10.1137/080733899, SIAM J. Numer. Anal. 47 (2009), 3584-3607. (2009) Zbl1205.65249MR2576512DOI10.1137/080733899
- Burman, E., Hansbo, P., 10.1016/j.cma.2003.12.032, Comput. Methods Appl. Mech. Eng. 193 (2004), 1437-1453. (2004) Zbl1085.76033MR2068903DOI10.1016/j.cma.2003.12.032
- Cairlet, P. G., The Finite Element Methods for Elliptic Problems. Repr., unabridged republ. of the orig. 1978, Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). (2002) MR1930132
- Cockburn, B., Dong, B., Guzmán, J., 10.1137/060677215, SIAM J. Numer. Anal. 46 (2008), 1250-1265. (2008) Zbl1168.65058MR2390992DOI10.1137/060677215
- Dörfler, W., Nochetto, R. H., 10.1007/s002110100321, Numer. Math. 91 (2002), 1-12. (2002) Zbl0995.65109MR1896084DOI10.1007/s002110100321
- Eriksson, K., Johnson, C., 10.1090/S0025-5718-1993-1149289-9, Math. Comput. 60 (1993), 167-188. (1993) Zbl0795.65074MR1149289DOI10.1090/S0025-5718-1993-1149289-9
- Ern, A., Guermond, J.-L., 10.1137/050624133, SIAM J. Numer. Anal. 44 (2006), 753-778. (2006) Zbl1122.65111MR2218968DOI10.1137/050624133
- Friedrichs, K. O., 10.1002/cpa.3160110306, Commun. Pure Appl. Math. 11 (1958), 333-418. (1958) Zbl0083.31802MR0100718DOI10.1002/cpa.3160110306
- Houston, P., Rannacher, R., Süli, E., 10.1016/S0045-7825(00)00174-2, Comput. Methods Appl. Mech. Eng. 190 (2000), 1483-1508. (2000) Zbl0970.65115MR1807010DOI10.1016/S0045-7825(00)00174-2
- Houston, P., Süli, E., 10.1137/S1064827500378799, SIAM J. Sci. Comput. 23 (2001), 1226-1252. (2001) Zbl1029.65130MR1885599DOI10.1137/S1064827500378799
- Johnson, C., Pitkäranta, J., 10.1090/S0025-5718-1986-0815828-4, Math. Comput. 46 (1986), 1-26. (1986) Zbl0618.65105MR0815828DOI10.1090/S0025-5718-1986-0815828-4
- Lasaint, P., Raviart, P. A., On a finite element method for solving the neutron transport equation, Proc. Symp. Math. Aspects Finite Elem. Partial Differ. Equat., Madison 1974 Academic Press New York (1974), 89-123. (1974) Zbl0341.65076MR0658142
- Peterson, T. E., 10.1137/0728006, SIAM J. Numer. Anal. 28 (1991), 133-140. (1991) Zbl0729.65085MR1083327DOI10.1137/0728006
- Reed, W. H., Hill, T. R., Triangular mesh methods for the neutron transport equation, Tech. Report LA-Ur-73-479, Los Alamos Scientific Laboratory, 1973.
- Richter, G. R., 10.1090/S0025-5718-1988-0917819-3, Math. Comput. 50 (1988), 75-88. (1988) Zbl0643.65059MR0917819DOI10.1090/S0025-5718-1988-0917819-3
- Richter, G. R., 10.1090/S0025-5718-08-02126-1, Math. Comput. 77 (2008), 1871-1885. (2008) Zbl1198.65196MR2429867DOI10.1090/S0025-5718-08-02126-1
- Verfürth, R., 10.1007/s002110050381, Numer. Math. 80 (1998), 641-663. (1998) Zbl0913.65095MR1650051DOI10.1007/s002110050381
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.