Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations

Tie Zhu Zhang; Shu Hua Zhang

Applications of Mathematics (2015)

  • Volume: 60, Issue: 1, page 1-20
  • ISSN: 0862-7940

Abstract

top
We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in d space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order k + 1 in the L 2 -norm if the method uses polynomials of order k . Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order k + 1 . Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the L 2 -norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis.

How to cite

top

Zhang, Tie Zhu, and Zhang, Shu Hua. "Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations." Applications of Mathematics 60.1 (2015): 1-20. <http://eudml.org/doc/262134>.

@article{Zhang2015,
abstract = {We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis.},
author = {Zhang, Tie Zhu, Zhang, Shu Hua},
journal = {Applications of Mathematics},
keywords = {discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; numerical experiments},
language = {eng},
number = {1},
pages = {1-20},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations},
url = {http://eudml.org/doc/262134},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Zhang, Tie Zhu
AU - Zhang, Shu Hua
TI - Optimal convergence and a posteriori error analysis of the original DG method for advection-reaction equations
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 1
EP - 20
AB - We consider the original DG method for solving the advection-reaction equations with arbitrary velocity in $d$ space dimensions. For triangulations satisfying the flow condition, we first prove that the optimal convergence rate is of order $k+1$ in the $L_2$-norm if the method uses polynomials of order $k$. Then, a very simple derivative recovery formula is given to produce an approximation to the derivative in the flow direction which superconverges with order $k+1$. Further we consider a residual-based a posteriori error estimate and give the global upper bound and local lower bound on the error in the DG-norm, which is stronger than the $L_2$-norm. The key elements in our a posteriori analysis are the saturation assumption and an interpolation estimate between the DG spaces. We show that the a posteriori error bounds are efficient and reliable. Finally, some numerical experiments are presented to illustrate the theoretical analysis.
LA - eng
KW - discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; discontinuous Galerkin method; advection-reaction equation; optimal convergence rate; a posteriori error estimate; numerical experiments
UR - http://eudml.org/doc/262134
ER -

References

top
  1. Achchab, B., Achchab, S., Agouzal, A., 10.1002/num.20016, Numer. Methods Partial Differ. Equations 20 (2004), 919-932. (2004) Zbl1059.65097MR2092413DOI10.1002/num.20016
  2. Becker, R., Hansbo, P., Stenberg, R., 10.1051/m2an:2003023, M2AN, Math. Model. Numer. Anal. 37 (2003), 209-225. (2003) Zbl1047.65099MR1991197DOI10.1051/m2an:2003023
  3. Braess, D., Verfürth, R., 10.1137/S0036142994264079, SIAM J. Numer. Anal. 33 (1996), 2431-2444. (1996) Zbl0866.65071MR1427472DOI10.1137/S0036142994264079
  4. Burman, E., 10.1137/080733899, SIAM J. Numer. Anal. 47 (2009), 3584-3607. (2009) Zbl1205.65249MR2576512DOI10.1137/080733899
  5. Burman, E., Hansbo, P., 10.1016/j.cma.2003.12.032, Comput. Methods Appl. Mech. Eng. 193 (2004), 1437-1453. (2004) Zbl1085.76033MR2068903DOI10.1016/j.cma.2003.12.032
  6. Cairlet, P. G., The Finite Element Methods for Elliptic Problems. Repr., unabridged republ. of the orig. 1978, Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). (2002) MR1930132
  7. Cockburn, B., Dong, B., Guzmán, J., 10.1137/060677215, SIAM J. Numer. Anal. 46 (2008), 1250-1265. (2008) Zbl1168.65058MR2390992DOI10.1137/060677215
  8. Dörfler, W., Nochetto, R. H., 10.1007/s002110100321, Numer. Math. 91 (2002), 1-12. (2002) Zbl0995.65109MR1896084DOI10.1007/s002110100321
  9. Eriksson, K., Johnson, C., 10.1090/S0025-5718-1993-1149289-9, Math. Comput. 60 (1993), 167-188. (1993) Zbl0795.65074MR1149289DOI10.1090/S0025-5718-1993-1149289-9
  10. Ern, A., Guermond, J.-L., 10.1137/050624133, SIAM J. Numer. Anal. 44 (2006), 753-778. (2006) Zbl1122.65111MR2218968DOI10.1137/050624133
  11. Friedrichs, K. O., 10.1002/cpa.3160110306, Commun. Pure Appl. Math. 11 (1958), 333-418. (1958) Zbl0083.31802MR0100718DOI10.1002/cpa.3160110306
  12. Houston, P., Rannacher, R., Süli, E., 10.1016/S0045-7825(00)00174-2, Comput. Methods Appl. Mech. Eng. 190 (2000), 1483-1508. (2000) Zbl0970.65115MR1807010DOI10.1016/S0045-7825(00)00174-2
  13. Houston, P., Süli, E., 10.1137/S1064827500378799, SIAM J. Sci. Comput. 23 (2001), 1226-1252. (2001) Zbl1029.65130MR1885599DOI10.1137/S1064827500378799
  14. Johnson, C., Pitkäranta, J., 10.1090/S0025-5718-1986-0815828-4, Math. Comput. 46 (1986), 1-26. (1986) Zbl0618.65105MR0815828DOI10.1090/S0025-5718-1986-0815828-4
  15. Lasaint, P., Raviart, P. A., On a finite element method for solving the neutron transport equation, Proc. Symp. Math. Aspects Finite Elem. Partial Differ. Equat., Madison 1974 Academic Press New York (1974), 89-123. (1974) Zbl0341.65076MR0658142
  16. Peterson, T. E., 10.1137/0728006, SIAM J. Numer. Anal. 28 (1991), 133-140. (1991) Zbl0729.65085MR1083327DOI10.1137/0728006
  17. Reed, W. H., Hill, T. R., Triangular mesh methods for the neutron transport equation, Tech. Report LA-Ur-73-479, Los Alamos Scientific Laboratory, 1973. 
  18. Richter, G. R., 10.1090/S0025-5718-1988-0917819-3, Math. Comput. 50 (1988), 75-88. (1988) Zbl0643.65059MR0917819DOI10.1090/S0025-5718-1988-0917819-3
  19. Richter, G. R., 10.1090/S0025-5718-08-02126-1, Math. Comput. 77 (2008), 1871-1885. (2008) Zbl1198.65196MR2429867DOI10.1090/S0025-5718-08-02126-1
  20. Verfürth, R., 10.1007/s002110050381, Numer. Math. 80 (1998), 641-663. (1998) Zbl0913.65095MR1650051DOI10.1007/s002110050381

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.