Existence of solutions for two types of generalized versions of the Cahn-Hilliard equation
Applications of Mathematics (2015)
- Volume: 60, Issue: 1, page 51-90
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHeida, Martin. "Existence of solutions for two types of generalized versions of the Cahn-Hilliard equation." Applications of Mathematics 60.1 (2015): 51-90. <http://eudml.org/doc/262195>.
@article{Heida2015,
abstract = {We show existence of solutions to two types of generalized anisotropic Cahn-Hilliard problems: In the first case, we assume the mobility to be dependent on the concentration and its gradient, where the system is supplied with dynamic boundary conditions. In the second case, we deal with classical no-flux boundary conditions where the mobility depends on concentration $u$, gradient of concentration $\nabla u$ and the chemical potential $\Delta u-s^\{\prime \}(u)$. The existence is shown using a newly developed generalization of gradient flows by the author and the theory of Young measures.},
author = {Heida, Martin},
journal = {Applications of Mathematics},
keywords = {Cahn-Hilliard; anisotropic behavior; gradient flow; curve of maximal slope; entropy; Cahn-Hilliard equation; anisotropic behavior; gradient flow; curve of maximal slope; entropy},
language = {eng},
number = {1},
pages = {51-90},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions for two types of generalized versions of the Cahn-Hilliard equation},
url = {http://eudml.org/doc/262195},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Heida, Martin
TI - Existence of solutions for two types of generalized versions of the Cahn-Hilliard equation
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 1
SP - 51
EP - 90
AB - We show existence of solutions to two types of generalized anisotropic Cahn-Hilliard problems: In the first case, we assume the mobility to be dependent on the concentration and its gradient, where the system is supplied with dynamic boundary conditions. In the second case, we deal with classical no-flux boundary conditions where the mobility depends on concentration $u$, gradient of concentration $\nabla u$ and the chemical potential $\Delta u-s^{\prime }(u)$. The existence is shown using a newly developed generalization of gradient flows by the author and the theory of Young measures.
LA - eng
KW - Cahn-Hilliard; anisotropic behavior; gradient flow; curve of maximal slope; entropy; Cahn-Hilliard equation; anisotropic behavior; gradient flow; curve of maximal slope; entropy
UR - http://eudml.org/doc/262195
ER -
References
top- Abels, H., Wilke, M., 10.1016/j.na.2006.10.002, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 67 3176-3193 (2007). (2007) Zbl1121.35018MR2347608DOI10.1016/j.na.2006.10.002
- Adams, R. A., Sobolev Spaces, Pure and Applied Mathematics 65. A Series of Monographs and Textbooks Academic Press, New York (1975). (1975) Zbl0314.46030MR0450957
- Brokate, M., Kenmochi, N., Müller, I., Rodriguez, J. F., Verdi, C., Phase transitions and hysteresis, Lectures Given at the Third C.I.M.E., 1993, Montecatini Terme, Italy Lecture Notes in Mathematics 1584 Springer, Berlin (1994), A. Visintin. (1994) MR1321829
- Buscaglia, G. C., Ausas, R. F., 10.1016/j.cma.2011.06.002, Comput. Methods Appl. Mech. Eng. 200 3011-3025 (2011). (2011) Zbl1230.76047MR2844033DOI10.1016/j.cma.2011.06.002
- Cahn, J. W., Elliott, C. M., Novick-Cohen, A., 10.1017/S0956792500002369, Eur. J. Appl. Math. 7 287-301 (1996). (1996) Zbl0861.35039MR1401172DOI10.1017/S0956792500002369
- Changchun, L., Cahn-Hilliard equation with terms of lower order and non-constant mobility, Electron. J. Qual. Theory Differ. Equ. 2003 (2003), 9 pp. (electronic only). (2003) Zbl1032.35076MR1986908
- Passo, R. Dal, Giacomelli, L., Novick-Cohen, A., 10.4171/IFB/9, Interfaces Free Bound. 1 199-226 (1999). (1999) MR1867131DOI10.4171/IFB/9
- Debussche, A., Dettori, L., 10.1016/0362-546X(94)00205-V, Nonlinear Anal., Theory Methods Appl. 24 1491-1514 (1995). (1995) Zbl0831.35088MR1327930DOI10.1016/0362-546X(94)00205-V
- Dellacherie, C., Meyer, P.-A., Probabilities and Potential, North-Holland Mathematics Studies 29 North-Holland Publishing Company, Amsterdam (1978). (1978) Zbl0494.60001MR0521810
- Elliott, C. M., Garcke, H., 10.1137/S0036141094267662, SIAM J. Math. Anal. 27 404-423 (1996). (1996) Zbl0856.35071MR1377481DOI10.1137/S0036141094267662
- Elliott, C. M., Zheng, S., 10.1007/BF00251803, Arch. Ration. Mech. Anal. 96 339-357 (1986). (1986) Zbl0624.35048MR0855754DOI10.1007/BF00251803
- Gal, C. G., Global well-posedness for the non-isothermal Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differ. Equ. 12 1241-1274 (2007). (2007) Zbl1162.35386MR2372239
- Gilardi, G., Miranville, A., Schimperna, G., 10.3934/cpaa.2009.8.881, Commun. Pure Appl. Anal. 8 881-912 (2009). (2009) Zbl1172.35417MR2476663DOI10.3934/cpaa.2009.8.881
- Grasselli, M., Miranville, A., Rossi, R., Schimperna, G., 10.1080/03605302.2010.543945, Commun. Partial Differ. Equations 36 1193-1238 (2011). (2011) Zbl1241.35024MR2810586DOI10.1080/03605302.2010.543945
- Heida, M., Modeling Multiphase Flow in Porous Media with an Application to Permafrost Soil, Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät, Heidelberg; Charles Univ. Praha, Faculty of Mathematics and Physics (PhD Thesis), Praha (2011). (2011)
- Heida, M., 10.1016/j.ijengsci.2012.09.005, Internat. J. Engrg. Sci. 62 126-156 (2013). (2013) MR2996309DOI10.1016/j.ijengsci.2012.09.005
- Heida, M., 10.1016/j.jmaa.2014.09.046, J. Math. Anal. Appl. 423 410-455 (2015). (2015) MR3273188DOI10.1016/j.jmaa.2014.09.046
- Ito, A., Kenmochi, N., Niezgódka, M., Large-time behaviour of non-isothermal models for phase separation, Proc. Conf. Elliptic and Parabolic Problems, 1994 Pitman Res. Notes Math. Ser. 325 Longman Scientific & Technical, Harlow 120-151 (1995). (1995) Zbl0838.35053MR1416579
- Lisini, S., Matthes, D., Savaré, G., 10.1016/j.jde.2012.04.004, J. Differ. Equations 253 814-850 (2012). (2012) Zbl1248.35095MR2921215DOI10.1016/j.jde.2012.04.004
- Liu, C., 10.1016/j.jmaa.2008.02.027, J. Math. Anal. Appl. 344 124-144 (2008). (2008) Zbl1158.35077MR2416296DOI10.1016/j.jmaa.2008.02.027
- Liu, C., Qi, Y., Yin, J., 10.1007/s10114-005-0711-5, Acta Math. Sin., Engl. Ser. 22 1139-1150 (2006). (2006) Zbl1106.35011MR2245245DOI10.1007/s10114-005-0711-5
- Lowengrub, J. S., Rätz, A., Voigt, A., 10.1103/PhysRevE.79.031926, Phys. Rev. E 79 (2009), 031926, 13 pp. (2009) MR2497179DOI10.1103/PhysRevE.79.031926
- Mercker, M., Models, numerics and simulations of deforming biological surfaces, Univ. Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät (PhD Thesis), Heidelberg (2012). (2012) Zbl1304.92023
- Mercker, M., Marciniak-Czochra, A., Richter, T., Hartmann, D., 10.1137/120885553, SIAM J. Appl. Math. 73 1768-1792 (2013). (2013) Zbl1282.74015MR3095724DOI10.1137/120885553
- Mercker, M., Richter, T., Hartmann, D., 10.1021/jp204127g, J. Phys. Chem. B 115 11739-11745, DOI: 10.1021/jp204127g (2011). (2011) DOI10.1021/jp204127g
- Miranville, A., Existence of solutions for Cahn-Hilliard type equations, Discrete Contin. Dyn. Syst. 2003 Suppl. Vol., 630-637 (2003). (2003) Zbl1070.35002MR2018168
- Miranville, A., Zelik, S., 10.1002/mma.464, Math. Methods Appl. Sci. 27 545-582 (2004). (2004) Zbl1050.35113MR2041814DOI10.1002/mma.464
- Miranville, A., Zelik, S., 10.3934/dcds.2010.28.275, Discrete Contin. Dyn. Syst. 28 275-310 (2010). (2010) Zbl1203.35046MR2629483DOI10.3934/dcds.2010.28.275
- Mugnai, L., Röger, M., 10.4171/IFB/179, Interfaces Free Bound. 10 45-78 (2008). (2008) Zbl1288.93096MR2383536DOI10.4171/IFB/179
- Mugnai, L., Röger, M., 10.1512/iumj.2011.60.3949, Indiana Univ. Math. J. 60 41-76 (2011). (2011) MR2952409DOI10.1512/iumj.2011.60.3949
- Novick-Cohen, A., The Cahn-Hilliard equation, Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland, Amsterdam 201-228 (2008). (2008) Zbl1185.35001MR2508166
- Novick-Cohen, A., The Cahn-Hilliard Equation: From Backwards Diffusion to Surface Diffusion, (to appear) in Cambridge University Press. MR2508166
- Qian, T., Wang, X.-P., Sheng, P., 10.1017/S0022112006001935, J. Fluid Mech. 564 333-360 (2006). (2006) Zbl1178.76296MR2261865DOI10.1017/S0022112006001935
- Racke, R., Zheng, S., The Cahn-Hilliard equation with dynamic boundary conditions, Adv. Differ. Equ. 8 83-110 (2003). (2003) Zbl1035.35050MR1946559
- Röger, M., Schätzle, R., 10.1007/s00209-006-0002-6, Math. Z. 254 675-714 (2006). (2006) Zbl1126.49010MR2253464DOI10.1007/s00209-006-0002-6
- Roidos, N., Schrohe, E., 10.1080/03605302.2012.736913, Commun. Partial Differ. Equations 38 925-943 (2013). (2013) Zbl1272.58013MR3046298DOI10.1080/03605302.2012.736913
- Rossi, R., 10.3934/cpaa.2005.4.405, Commun. Pure Appl. Anal. 4 405-430 (2005). (2005) Zbl1078.35058MR2149524DOI10.3934/cpaa.2005.4.405
- Rossi, R., Savaré, G., 10.1051/cocv:2006013, ESAIM, Control Optim. Calc. Var. 12 564-614 (2006). (2006) Zbl1116.34048MR2224826DOI10.1051/cocv:2006013
- Serfaty, S., Gamma-convergence of gradient flows on Hilbert and metric spaces and applications, Discrete Contin. Dyn. Syst. 31 1427-1451 (2011). (2011) Zbl1239.35015MR2836361
- Stefanelli, U., 10.1137/070684574, SIAM J. Control Optim. 47 1615-1642 (2008). (2008) Zbl1194.35214MR2425653DOI10.1137/070684574
- Taylor, J. E., Cahn, J. W., 10.1007/BF02186838, J. Stat. Phys. 77 183-197 (1994). (1994) Zbl0844.35044MR1300532DOI10.1007/BF02186838
- Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, American Mathematical Society, Providence (2001). (2001) Zbl0981.35001MR1846644
- Torabi, S., Lowengrub, J., Voigt, A., Wise, S., 10.1098/rspa.2008.0385, Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 465 1337-1359 (2009). (2009) Zbl1186.80014MR2500806DOI10.1098/rspa.2008.0385
- Torabi, S., Wise, S., Lowengrub, J., Rätz, A., Voigt, A., A new method for simulating strongly anisotropic Cahn-Hilliard equations, Materials Science and Technology-Association for Iron and Steel Technology 3 1432-1444 (2007). (2007)
- Wise, S., Kim, J., Lowengrub, J., 10.1016/j.jcp.2007.04.020, J. Comput. Phys. 226 414-446 (2007). (2007) Zbl1310.82044MR2356365DOI10.1016/j.jcp.2007.04.020
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.