Some results on stability and on characterization of K-convexity of set-valued functions

Tiziana Cardinali; Francesca Papalini

Annales Polonici Mathematici (1993)

  • Volume: 58, Issue: 2, page 185-192
  • ISSN: 0066-2216

Abstract

top
We present a stability theorem of Ulam-Hyers type for K-convex set-valued functions, and prove that a set-valued function is K-convex if and only if it is K-midconvex and K-quasiconvex.

How to cite

top

Tiziana Cardinali, and Francesca Papalini. "Some results on stability and on characterization of K-convexity of set-valued functions." Annales Polonici Mathematici 58.2 (1993): 185-192. <http://eudml.org/doc/262414>.

@article{TizianaCardinali1993,
abstract = {We present a stability theorem of Ulam-Hyers type for K-convex set-valued functions, and prove that a set-valued function is K-convex if and only if it is K-midconvex and K-quasiconvex.},
author = {Tiziana Cardinali, Francesca Papalini},
journal = {Annales Polonici Mathematici},
keywords = {set-valued functions; K-convex (K-midconvex, K-quasiconvex) set-valued functions; Ulam-Hyers stability; -convexity; stability of convex functions; - quasiconvexity},
language = {eng},
number = {2},
pages = {185-192},
title = {Some results on stability and on characterization of K-convexity of set-valued functions},
url = {http://eudml.org/doc/262414},
volume = {58},
year = {1993},
}

TY - JOUR
AU - Tiziana Cardinali
AU - Francesca Papalini
TI - Some results on stability and on characterization of K-convexity of set-valued functions
JO - Annales Polonici Mathematici
PY - 1993
VL - 58
IS - 2
SP - 185
EP - 192
AB - We present a stability theorem of Ulam-Hyers type for K-convex set-valued functions, and prove that a set-valued function is K-convex if and only if it is K-midconvex and K-quasiconvex.
LA - eng
KW - set-valued functions; K-convex (K-midconvex, K-quasiconvex) set-valued functions; Ulam-Hyers stability; -convexity; stability of convex functions; - quasiconvexity
UR - http://eudml.org/doc/262414
ER -

References

top
  1. [1] A. Averna e T. Cardinali, Sui concetti di K-convessità (K-concavità) e di K-convessità* (K-concavità*), Riv. Mat. Univ. Parma (4) 16 (1990), 311-330. 
  2. [2] F. A. Behringer, Convexity is equivalent to midpoint convexity combined with strict quasiconvexity, Optimization (ed. K.-H. Elster, Ilmenau, Germany), 24 (1992), 219-228. Zbl0815.39009
  3. [3] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86. Zbl0549.39006
  4. [4] Z. Daróczy and Z. Páles, Convexity with given infinite weight sequences, Stochastica 11 (1987), 5-12. 
  5. [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 411-416. Zbl0061.26403
  6. [6] D. H. Hyers and S. M. Ulam, Approximately convex functions, Proc. Amer. Math. Soc. 3 (1952), 821-828. Zbl0047.29505
  7. [7] Z. Kominek, A characterization of convex functions in linear spaces, Zeszyty Nauk. Akad. Górniczo-Hutniczej 1277, Opuscula Math. 5 (1989), 71-74. 
  8. [8] N. Kuhn, A note on t-convex functions, in: General Inequalities 4 (Proc. Oberwolfach 1983), Internat. Ser. Numer. Math. 71, Birkhäuser, 1984, 269-276. 
  9. [9] C. T. Ng and K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc., to appear. Zbl0823.26006
  10. [10]₁ K. Nikodem, Approximately quasiconvex functions, C. R. Math. Rep. Acad. Sci. Canada 10 (6) (1988), 291-294. Zbl0664.26006
  11. [10]₂ K. Nikodem, On some class of midconvex functions, Ann. Polon. Math. 50 (1989), 145-151. Zbl0706.39004
  12. [10]₃ K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Łódz. 559 (Rozprawy Mat. 114) (1989). 
  13. [11] H. Rådström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169. 
  14. [12] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, N.J., 1970. Zbl0193.18401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.