The fixed points of holomorphic maps on a convex domain

Do Duc Thai

Annales Polonici Mathematici (1992)

  • Volume: 56, Issue: 2, page 143-148
  • ISSN: 0066-2216

Abstract

top
We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in n then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.

How to cite

top

Do Duc Thai. "The fixed points of holomorphic maps on a convex domain." Annales Polonici Mathematici 56.2 (1992): 143-148. <http://eudml.org/doc/262465>.

@article{DoDucThai1992,
abstract = {We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in $ℂ^n$ then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.},
author = {Do Duc Thai},
journal = {Annales Polonici Mathematici},
keywords = {fixed points; holomorphic maps; convex domains},
language = {eng},
number = {2},
pages = {143-148},
title = {The fixed points of holomorphic maps on a convex domain},
url = {http://eudml.org/doc/262465},
volume = {56},
year = {1992},
}

TY - JOUR
AU - Do Duc Thai
TI - The fixed points of holomorphic maps on a convex domain
JO - Annales Polonici Mathematici
PY - 1992
VL - 56
IS - 2
SP - 143
EP - 148
AB - We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in $ℂ^n$ then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.
LA - eng
KW - fixed points; holomorphic maps; convex domains
UR - http://eudml.org/doc/262465
ER -

References

top
  1. [1] T. Barth, Taut and tight manifolds, Proc. Amer. Math. Soc. 24 (1970), 429-431. Zbl0191.09403
  2. [2] T. Barth, Convex domains and Kobayashi hyperbolicity, ibid. 79 (1980), 556-558. Zbl0438.32013
  3. [3] S. Dineen, R. Timoney et J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 515-529. Zbl0603.46052
  4. [4] R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York 1965. Zbl0182.16101
  5. [5] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976. Zbl0343.32002
  6. [6] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland Math. Stud. 40, Amsterdam 1980. Zbl0447.46040
  7. [7] P. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc. 76 (1970), 49-51. Zbl0192.44103
  8. [8] J. L. Kelley, General Topology, Van Nostrand, New York 1957. 
  9. [9] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York 1970. Zbl0207.37902
  10. [10] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474. 
  11. [11] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. Zbl0509.32015
  12. [12] H. L. Royden and P. Wong, Carathéodory and Kobayashi metrics on convex domains, to appear. 
  13. [13] E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394. Zbl0488.30015
  14. [14] E. Vesentini, Complex geodesics and holomorphic maps, in: Sympos. Math. 26, Inst. Naz. Alta Mat. Fr. Severi, 1982, 211-230. Zbl0506.32008
  15. [15] J.-P. Vigué, Points fixes d’applications holomorphes dans un domaine borné convexe de n , Trans. Amer. Math. Soc. 289 (1985), 345-353. Zbl0589.32043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.