Holomorphic functions of fast growth on submanifolds of the domain

Piotr Jakóbczak

Annales Polonici Mathematici (1998)

  • Volume: 70, Issue: 1, page 145-155
  • ISSN: 0066-2216

Abstract

top
We construct a function f holomorphic in a balanced domain D in N such that for every positive-dimensional subspace Π of N , and for every p with 1 ≤ p < ∞, f | Π D is not L p -integrable on Π ∩ D.

How to cite

top

Piotr Jakóbczak. "Holomorphic functions of fast growth on submanifolds of the domain." Annales Polonici Mathematici 70.1 (1998): 145-155. <http://eudml.org/doc/262548>.

@article{PiotrJakóbczak1998,
abstract = {We construct a function f holomorphic in a balanced domain D in $ℂ^N$ such that for every positive-dimensional subspace Π of $ℂ^N$, and for every p with 1 ≤ p < ∞, $f|_\{Π ∩ D\}$ is not $L^p$-integrable on Π ∩ D.},
author = {Piotr Jakóbczak},
journal = {Annales Polonici Mathematici},
keywords = {balanced domains; growth of holomorphic function; pseudoconvex balanced domain; holomorphic functions; growth},
language = {eng},
number = {1},
pages = {145-155},
title = {Holomorphic functions of fast growth on submanifolds of the domain},
url = {http://eudml.org/doc/262548},
volume = {70},
year = {1998},
}

TY - JOUR
AU - Piotr Jakóbczak
TI - Holomorphic functions of fast growth on submanifolds of the domain
JO - Annales Polonici Mathematici
PY - 1998
VL - 70
IS - 1
SP - 145
EP - 155
AB - We construct a function f holomorphic in a balanced domain D in $ℂ^N$ such that for every positive-dimensional subspace Π of $ℂ^N$, and for every p with 1 ≤ p < ∞, $f|_{Π ∩ D}$ is not $L^p$-integrable on Π ∩ D.
LA - eng
KW - balanced domains; growth of holomorphic function; pseudoconvex balanced domain; holomorphic functions; growth
UR - http://eudml.org/doc/262548
ER -

References

top
  1. [1] J.-P. Ferrier, Spectral Theory and Complex Analysis, North-Holland, 1973. 
  2. [2] J. Globevnik and E. L. Stout, Highly noncontinuable functions on convex domains, Bull. Sci. Math. 104 (1980), 417-434. Zbl0482.32002
  3. [3] G. M. Henkin, Integral representation of functions holomorphic in strictly pseudoconvex domains and applications to the ∂̅-problem, Math. USSR-Sb. 11 (1970), 273-281. 
  4. [4] P. Jakóbczak, Highly nonintegrable functions in the unit ball, Israel J. Math. 97 (1997), 175-181. Zbl0887.32004
  5. [5] J. Janas, On a theorem of Lebow and Mlak for several commuting operators, Studia Math. 76 (1983), 249-253. Zbl0535.47003
  6. [6] S. G. Krantz, Function Theory of Several Complex Variables, Wiley, 1982. Zbl0471.32008
  7. [7] I. Lieb, Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten I, Math. Ann. 190 (1970), 6-44. Zbl0199.42702
  8. [8] J. Siciak, Highly noncontinuable functions on polynomially convex sets, Zeszyty Naukowe Uniw. Jagiell. 25 (1985), 95-107. Zbl0585.32012
  9. [9] S. Trapani, Complex retractions and envelopes of holomorphy, Proc. Amer. Math. Soc. 104 (1988), 145-148. Zbl0664.32008
  10. [10] P. Wojtaszczyk, On highly nonintegrable functions and homogeneous polynomials, Ann. Polon. Math. 65 (1997), 245-251. Zbl0872.32001
  11. [11] A. Zeriahi, Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math. 50 (1989), 81-91. Zbl0688.32004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.