Lebesgue measure and mappings of the Sobolev class W 1 , n

O. Martio

Banach Center Publications (1995)

  • Volume: 31, Issue: 1, page 255-262
  • ISSN: 0137-6934

Abstract

top
We present a survey of the Lusin condition (N) for W 1 , n -Sobolev mappings f : G n defined in a domain G of n . Applications to the boundary behavior of conformal mappings are discussed.

How to cite

top

Martio, O.. "Lebesgue measure and mappings of the Sobolev class $W^{1,n}$." Banach Center Publications 31.1 (1995): 255-262. <http://eudml.org/doc/262873>.

@article{Martio1995,
abstract = {We present a survey of the Lusin condition (N) for $W^\{1,n\}$-Sobolev mappings $f:G → ℝ^n$ defined in a domain G of $ℝ^n$. Applications to the boundary behavior of conformal mappings are discussed.},
author = {Martio, O.},
journal = {Banach Center Publications},
keywords = {jacobians of the Sobolev mappings; mappings of the class $W^\{1,n\}$; Lusin condition (N)},
language = {eng},
number = {1},
pages = {255-262},
title = {Lebesgue measure and mappings of the Sobolev class $W^\{1,n\}$},
url = {http://eudml.org/doc/262873},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Martio, O.
TI - Lebesgue measure and mappings of the Sobolev class $W^{1,n}$
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 255
EP - 262
AB - We present a survey of the Lusin condition (N) for $W^{1,n}$-Sobolev mappings $f:G → ℝ^n$ defined in a domain G of $ℝ^n$. Applications to the boundary behavior of conformal mappings are discussed.
LA - eng
KW - jacobians of the Sobolev mappings; mappings of the class $W^{1,n}$; Lusin condition (N)
UR - http://eudml.org/doc/262873
ER -

References

top
  1. [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in n , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324. Zbl0548.30016
  2. [C] L. Cesari, Sulle transformazioni continue, Ann. Mat. Pura Appl. 21 (1941), 157-188. Zbl0028.21004
  3. [G] F. W. Gehring, Rings and quasiconformal mappings in space, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 98-105. Zbl0096.27602
  4. [H] P. Hajłasz, Change of variables formula under minimal assumptions, Colloq. Math. 114 (1993), 93-101. Zbl0840.26009
  5. [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, Oxford 1993. Zbl0780.31001
  6. [JM] P. Jones and N. G. Makarov, Density properties of harmonic measure, preprint. Zbl0842.31001
  7. [M] J. Malý, Hölder type quasicontinuity, to appear. Zbl0803.46037
  8. [MM] J. Malý and O. Martio, Lusin’s condition (N) and mappings of the class W 1 , n , to appear. Zbl0812.30007
  9. [MZ] O. Martio and W. P. Ziemer, Lusin's condition (N) and mappings with non-negative Jacobians, Michigan Math. J., to appear. 
  10. [Mu] S. Müller, Higher integrability of determinants and weak convergence in L 1 , J. Reine Angew. Math. 412 (1990), 20-34. 
  11. [NP] R. Näkki and B. Palka, Boundary angles, cusps and conformal mappings, Complex Variables Theory Appl. 5 (1986), 165-180. Zbl0593.30011
  12. [P] S. P. Ponomarev, Examples of homeomorphisms in the class A C T L p which do not satisfy the absolute continuity condition of Banach, Dokl. Akad. Nauk SSSR 201 (1971), 1053-1054 (in Russian). 
  13. [RR] T. Radó and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer 1955. Zbl0067.03506
  14. [Rei] H. M. Reimann, On the absolute continuity of a surface representation, Comment. Math. Helv. 46 (1971), 44-47. Zbl0212.40503
  15. [Res1] Yu. G. Reshetnyak, The condition (N) for W n , l o c 1 space mappings, Sibirsk. Mat. Zh. 28 (1987), 149-153 (in Russian). 
  16. [Res2] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monographs 73, Amer. Math. Soc., 1989. 
  17. [S] S. Saks, Theory of the Integral, Warsaw, 1937. Zbl0017.30004
  18. [V] J. Väisälä, Quasiconformal maps and positive boundary measure, Analysis 9 (1989), 205-216. Zbl0674.30018

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.