Lebesgue measure and mappings of the Sobolev class
Banach Center Publications (1995)
- Volume: 31, Issue: 1, page 255-262
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topMartio, O.. "Lebesgue measure and mappings of the Sobolev class $W^{1,n}$." Banach Center Publications 31.1 (1995): 255-262. <http://eudml.org/doc/262873>.
@article{Martio1995,
abstract = {We present a survey of the Lusin condition (N) for $W^\{1,n\}$-Sobolev mappings $f:G → ℝ^n$ defined in a domain G of $ℝ^n$. Applications to the boundary behavior of conformal mappings are discussed.},
author = {Martio, O.},
journal = {Banach Center Publications},
keywords = {jacobians of the Sobolev mappings; mappings of the class $W^\{1,n\}$; Lusin condition (N)},
language = {eng},
number = {1},
pages = {255-262},
title = {Lebesgue measure and mappings of the Sobolev class $W^\{1,n\}$},
url = {http://eudml.org/doc/262873},
volume = {31},
year = {1995},
}
TY - JOUR
AU - Martio, O.
TI - Lebesgue measure and mappings of the Sobolev class $W^{1,n}$
JO - Banach Center Publications
PY - 1995
VL - 31
IS - 1
SP - 255
EP - 262
AB - We present a survey of the Lusin condition (N) for $W^{1,n}$-Sobolev mappings $f:G → ℝ^n$ defined in a domain G of $ℝ^n$. Applications to the boundary behavior of conformal mappings are discussed.
LA - eng
KW - jacobians of the Sobolev mappings; mappings of the class $W^{1,n}$; Lusin condition (N)
UR - http://eudml.org/doc/262873
ER -
References
top- [BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257-324. Zbl0548.30016
- [C] L. Cesari, Sulle transformazioni continue, Ann. Mat. Pura Appl. 21 (1941), 157-188. Zbl0028.21004
- [G] F. W. Gehring, Rings and quasiconformal mappings in space, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 98-105. Zbl0096.27602
- [H] P. Hajłasz, Change of variables formula under minimal assumptions, Colloq. Math. 114 (1993), 93-101. Zbl0840.26009
- [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, Oxford 1993. Zbl0780.31001
- [JM] P. Jones and N. G. Makarov, Density properties of harmonic measure, preprint. Zbl0842.31001
- [M] J. Malý, Hölder type quasicontinuity, to appear. Zbl0803.46037
- [MM] J. Malý and O. Martio, Lusin’s condition (N) and mappings of the class , to appear. Zbl0812.30007
- [MZ] O. Martio and W. P. Ziemer, Lusin's condition (N) and mappings with non-negative Jacobians, Michigan Math. J., to appear.
- [Mu] S. Müller, Higher integrability of determinants and weak convergence in , J. Reine Angew. Math. 412 (1990), 20-34.
- [NP] R. Näkki and B. Palka, Boundary angles, cusps and conformal mappings, Complex Variables Theory Appl. 5 (1986), 165-180. Zbl0593.30011
- [P] S. P. Ponomarev, Examples of homeomorphisms in the class which do not satisfy the absolute continuity condition of Banach, Dokl. Akad. Nauk SSSR 201 (1971), 1053-1054 (in Russian).
- [RR] T. Radó and P. V. Reichelderfer, Continuous Transformations in Analysis, Springer 1955. Zbl0067.03506
- [Rei] H. M. Reimann, On the absolute continuity of a surface representation, Comment. Math. Helv. 46 (1971), 44-47. Zbl0212.40503
- [Res1] Yu. G. Reshetnyak, The condition (N) for space mappings, Sibirsk. Mat. Zh. 28 (1987), 149-153 (in Russian).
- [Res2] Yu. G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monographs 73, Amer. Math. Soc., 1989.
- [S] S. Saks, Theory of the Integral, Warsaw, 1937. Zbl0017.30004
- [V] J. Väisälä, Quasiconformal maps and positive boundary measure, Analysis 9 (1989), 205-216. Zbl0674.30018
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.