Discrete thickness

Sebastian Scholtes

Molecular Based Mathematical Biology (2014)

  • Volume: 2, Issue: 1, page Article ID 1450045, 16 p.-Article ID 1450045, 16 p.
  • ISSN: 2299-3266

Abstract

top
We investigate the relationship between a discrete version of thickness and its smooth counterpart. These discrete energies are deffned on equilateral polygons with n vertices. It will turn out that the smooth ropelength, which is the scale invariant quotient of length divided by thickness, is the Γ-limit of the discrete ropelength for n → ∞, regarding the topology induced by the Sobolev norm ‖ · ‖ W1,∞(S1,ℝd). This result directly implies the convergence of almost minimizers of the discrete energies in a fixed knot class to minimizers of the smooth energy.Moreover,we show that the unique absolute minimizer of inverse discrete thickness is the regular n-gon.

How to cite

top

Sebastian Scholtes. "Discrete thickness." Molecular Based Mathematical Biology 2.1 (2014): Article ID 1450045, 16 p.-Article ID 1450045, 16 p.. <http://eudml.org/doc/266712>.

@article{SebastianScholtes2014,
abstract = {We investigate the relationship between a discrete version of thickness and its smooth counterpart. These discrete energies are deffned on equilateral polygons with n vertices. It will turn out that the smooth ropelength, which is the scale invariant quotient of length divided by thickness, is the Γ-limit of the discrete ropelength for n → ∞, regarding the topology induced by the Sobolev norm ‖ · ‖ W1,∞(S1,ℝd). This result directly implies the convergence of almost minimizers of the discrete energies in a fixed knot class to minimizers of the smooth energy.Moreover,we show that the unique absolute minimizer of inverse discrete thickness is the regular n-gon.},
author = {Sebastian Scholtes},
journal = {Molecular Based Mathematical Biology},
keywords = {discrete energy; thickness; ropelength; Γ-convergence; geometric knot theory; ideal knot; Schur’s Theorem; Möbius energy; polygonal knot; minimizers; knot energy; -convergence},
language = {eng},
number = {1},
pages = {Article ID 1450045, 16 p.-Article ID 1450045, 16 p.},
title = {Discrete thickness},
url = {http://eudml.org/doc/266712},
volume = {2},
year = {2014},
}

TY - JOUR
AU - Sebastian Scholtes
TI - Discrete thickness
JO - Molecular Based Mathematical Biology
PY - 2014
VL - 2
IS - 1
SP - Article ID 1450045, 16 p.
EP - Article ID 1450045, 16 p.
AB - We investigate the relationship between a discrete version of thickness and its smooth counterpart. These discrete energies are deffned on equilateral polygons with n vertices. It will turn out that the smooth ropelength, which is the scale invariant quotient of length divided by thickness, is the Γ-limit of the discrete ropelength for n → ∞, regarding the topology induced by the Sobolev norm ‖ · ‖ W1,∞(S1,ℝd). This result directly implies the convergence of almost minimizers of the discrete energies in a fixed knot class to minimizers of the smooth energy.Moreover,we show that the unique absolute minimizer of inverse discrete thickness is the regular n-gon.
LA - eng
KW - discrete energy; thickness; ropelength; Γ-convergence; geometric knot theory; ideal knot; Schur’s Theorem; Möbius energy; polygonal knot; minimizers; knot energy; -convergence
UR - http://eudml.org/doc/266712
ER -

References

top
  1. [1] J. Cantarella, J. H. Fu, R. Kusner, and J. M. Sullivan. Ropelength criticality. arxiv:1102.3234, 2011 (to appear in Geom. Topol.). 
  2. [2] J. Cantarella, R. B. Kusner, and J. M. Sullivan. On the minimum ropelength of knots and links. Invent. Math., 150(2):257– 286, 2002. Zbl1036.57001
  3. [3] X. Dai and Y. Diao. The minimum of knot energy functions. J. Knot Theory Ramifications, 9(6):713–724, 2000. Zbl0999.57011
  4. [4] G. Dal Maso. An introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, 8. Birkhäuser Boston Inc., Boston, MA, 1993. 
  5. [5] H. Federer. Curvature measures. Trans. Amer. Math. Soc., 93:418–491, 1959. Zbl0089.38402
  6. [6] H. Gerlach. Der Globale Krümmungsradius für offene und geschlossene Kurven im Rn. Diplomarbeit, Mathematisch- Naturwissenschaftliche Fakultät, Rheinische Friedrich-Wilhelms-Universität Bonn, 2004. 
  7. [7] O. Gonzalez and R. de la Llave. Existence of ideal knots. J. Knot Theory Ramifications, 12(1):123–133, 2003. Zbl1028.57008
  8. [8] O. Gonzalez and J. H. Maddocks. Global curvature, thickness, and the ideal shapes of knots. Proc. Natl. Acad. Sci. USA, 96(9):4769–4773 (electronic), 1999. Zbl1057.57500
  9. [9] O. Gonzalez, J. H. Maddocks, F. Schuricht, and H. von der Mosel. Global curvature and self-contact of nonlinearly elastic curves and rods. Calc. Var. Partial Differential Equations, 14(1):29–68, 2002. Zbl1006.49001
  10. [10] V. Katritch, J. Bednar, D. Michoud, R. G. Scharein, J. Dubochet, and A. Stasiak. Geometry and physics of knots. Nature, 384(6605):142–145, 1996. 
  11. [11] V. Katritch, W. K. Olson, P. Pieranski, J. Dubochet, and A. Stasiak. Properties of ideal composite knots. Nature, 388(6638):148–151, 1997. 
  12. [12] R. A. Litherland, J. Simon, O. Durumeric, and E. Rawdon. Thickness of knots. Topology Appl., 91(3):233–244, 1999. Zbl0924.57011
  13. [13] A. Lytchak. Almost convex subsets. Geom. Dedicata, 115:201–218, 2005. Zbl1088.53025
  14. [14] K. C. Millett, M. Piatek, and E. J. Rawdon. Polygonal knot space near ropelength-minimized knots. J. Knot Theory Ramifications, 17(5):601–631, 2008. [WoS] Zbl1152.57005
  15. [15] J. W. Milnor. On the total curvature of knots. Ann. of Math. (2), 52:248–257, 1950. Zbl0037.38904
  16. [16] E. J. Rawdon. Thickness of polygonal knots. PhD thesis, University of Iowa, 1997. 
  17. [17] E. J. Rawdon. Approximating the thickness of a knot. In Ideal knots, volume 19 of Ser. Knots Everything, pages 143–150. World Sci. Publ., River Edge, NJ, 1998. Zbl0943.57002
  18. [18] E. J. Rawdon. Approximating smooth thickness. J. Knot Theory Ramifications, 9(1):113–145, 2000. Zbl0999.57010
  19. [19] E. J. Rawdon. Can computers discover ideal knots? Experiment. Math., 12(3):287–302, 2003. Zbl1073.57003
  20. [20] S. Scholtes. Discrete Möbius Energy. arxiv:1311.3056v3, 2013. 
  21. [21] S. Scholtes. On hypersurfaces of positive reach, alternating Steiner formulæ and Hadwiger’s Problem. arxiv:1304.4179, 2013. 
  22. [22] F. Schuricht and H. von der Mosel. Global curvature for rectifiable loops. Math. Z., 243(1):37–77, 2003. 
  23. [23] F. Schuricht and H. von der Mosel. Characterization of ideal knots. Calc. Var. Partial Differential Equations, 19(3):281–305, 2004. 
  24. [24] J. Simon. Physical knots. In Physical knots: knotting, linking, and folding geometric objects in R3 (Las Vegas, NV, 2001), volume 304 of Contemp. Math., pages 1–30. Amer. Math. Soc., Providence, RI, 2002. 
  25. [25] A. Stasiak, V. Katritch, J. Bednar, D. Michoud, and J. Dubochet. Electrophoretic mobility of DNA knots. Nature, 384(6605):122, 1996. Zbl0864.92011
  26. [26] A. Stasiak, V. Katritch, and L. H. Kauffman. Ideal knots, volume 19 of Series on Knots and Everything. World Scientific Publishing Co. Inc., River Edge, NJ, 1998. Zbl0915.00018
  27. [27] P. Strzelecki, M. Szumanska, and H. von der Mosel. On some knot energies involving Menger curvature. Topology Appl., 160(13):1507–1529, 2013. [WoS] Zbl1282.49034
  28. [28] J. M. Sullivan. Approximating ropelength by energy functions. In Physical knots: knotting, linking, and folding geometric objects in R3 (Las Vegas, NV, 2001), volume 304 of Contemp. Math., pages 181–186. Amer. Math. Soc., Providence, RI, 2002. 
  29. [29] J. M. Sullivan. Curves of finite total curvature. In Discrete differential geometry, volume 38 of Oberwolfach Semin., pages 137–161. Birkhäuser, Basel, 2008. Zbl1151.53305

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.