Linear Transformations of Euclidean Topological Spaces. Part II

Karol Pąk

Formalized Mathematics (2011)

  • Volume: 19, Issue: 2, page 109-112
  • ISSN: 1426-2630

Abstract

top
We prove a number of theorems concerning various notions used in the theory of continuity of barycentric coordinates.

How to cite

top

Karol Pąk. "Linear Transformations of Euclidean Topological Spaces. Part II." Formalized Mathematics 19.2 (2011): 109-112. <http://eudml.org/doc/266959>.

@article{KarolPąk2011,
abstract = {We prove a number of theorems concerning various notions used in the theory of continuity of barycentric coordinates.},
author = {Karol Pąk},
journal = {Formalized Mathematics},
language = {eng},
number = {2},
pages = {109-112},
title = {Linear Transformations of Euclidean Topological Spaces. Part II},
url = {http://eudml.org/doc/266959},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Karol Pąk
TI - Linear Transformations of Euclidean Topological Spaces. Part II
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 2
SP - 109
EP - 112
AB - We prove a number of theorems concerning various notions used in the theory of continuity of barycentric coordinates.
LA - eng
UR - http://eudml.org/doc/266959
ER -

References

top
  1. [1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007, doi:10.2478/v10037-007-0015-6.[Crossref] 
  2. [2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990. 
  3. [3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990. Zbl06213858
  4. [4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  5. [5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  6. [6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  7. [7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  8. [8] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990. 
  9. [9] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  10. [10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991. 
  11. [11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990. 
  12. [12] Anna Lango and Grzegorz Bancerek. Product of families of groups and vector spaces. Formalized Mathematics, 3(2):235-240, 1992. 
  13. [13] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339-345, 1996. 
  14. [14] Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007, doi:10.2478/v10037-007-0024-5.[Crossref] 
  15. [15] Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.[Crossref] 
  16. [16] Karol Pąk. Linear transformations of Euclidean topological spaces. Formalized Mathematics, 19(2):103-108, 2011, doi: 10.2478/v10037-011-0016-3.[Crossref] Zbl1276.15002
  17. [17] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990. 
  18. [18] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990. 
  19. [19] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990. 
  20. [20] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990. 
  21. [21] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990. 
  22. [22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990. 
  23. [23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  24. [24] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  25. [25] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.