More on the Continuity of Real Functions

Keiko Narita; Artur Kornilowicz; Yasunari Shidama

Formalized Mathematics (2011)

  • Volume: 19, Issue: 4, page 233-239
  • ISSN: 1426-2630

Abstract

top
In this article we demonstrate basic properties of the continuous functions from R to Rn which correspond to state space equations in control engineering.

How to cite

top

Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. "More on the Continuity of Real Functions." Formalized Mathematics 19.4 (2011): 233-239. <http://eudml.org/doc/268109>.

@article{KeikoNarita2011,
abstract = {In this article we demonstrate basic properties of the continuous functions from R to Rn which correspond to state space equations in control engineering.},
author = {Keiko Narita, Artur Kornilowicz, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {4},
pages = {233-239},
title = {More on the Continuity of Real Functions},
url = {http://eudml.org/doc/268109},
volume = {19},
year = {2011},
}

TY - JOUR
AU - Keiko Narita
AU - Artur Kornilowicz
AU - Yasunari Shidama
TI - More on the Continuity of Real Functions
JO - Formalized Mathematics
PY - 2011
VL - 19
IS - 4
SP - 233
EP - 239
AB - In this article we demonstrate basic properties of the continuous functions from R to Rn which correspond to state space equations in control engineering.
LA - eng
UR - http://eudml.org/doc/268109
ER -

References

top
  1. Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  2. Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  3. Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990. 
  4. Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  5. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  6. Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  7. Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991. 
  8. Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005. 
  9. Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces Rn. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.[Crossref] 
  10. Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990. 
  11. Artur Korniłowicz. Arithmetic operations on functions from sets into functional sets. Formalized Mathematics, 17(1):43-60, 2009, doi:10.2478/v10037-009-0005-y.[Crossref] 
  12. Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into Rn. Formalized Mathematics, 17(2):179-185, 2009, doi: 10.2478/v10037-009-0021-y.[Crossref] 
  13. Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on normed linear spaces. Formalized Mathematics, 12(3):269-275, 2004. 
  14. Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. More on continuous functions on normed linear spaces. Formalized Mathematics, 19(1):45-49, 2011, doi: 10.2478/v10037-011-0008-3.[Crossref] Zbl1276.46063
  15. Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990. 
  16. Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991. 
  17. Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990. 
  18. Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990. 
  19. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  20. Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  21. Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990. 
  22. Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.