A note on uniquely embeddable graphs
Discussiones Mathematicae Graph Theory (1998)
- Volume: 18, Issue: 1, page 15-21
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topMariusz Woźniak. "A note on uniquely embeddable graphs." Discussiones Mathematicae Graph Theory 18.1 (1998): 15-21. <http://eudml.org/doc/270322>.
@article{MariuszWoźniak1998,
abstract = {Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an embedding G into its complement [G̅]. In this note, we consider a problem concerning the uniqueness of such an embedding.},
author = {Mariusz Woźniak},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {packing of graphs; embedding},
language = {eng},
number = {1},
pages = {15-21},
title = {A note on uniquely embeddable graphs},
url = {http://eudml.org/doc/270322},
volume = {18},
year = {1998},
}
TY - JOUR
AU - Mariusz Woźniak
TI - A note on uniquely embeddable graphs
JO - Discussiones Mathematicae Graph Theory
PY - 1998
VL - 18
IS - 1
SP - 15
EP - 21
AB - Let G be a simple graph of order n and size e(G). It is well known that if e(G) ≤ n-2, then there is an embedding G into its complement [G̅]. In this note, we consider a problem concerning the uniqueness of such an embedding.
LA - eng
KW - packing of graphs; embedding
UR - http://eudml.org/doc/270322
ER -
References
top- [1] B. Bollobás and S.E. Eldridge, Packings of graphs and applications to computational complexity, J. Combin. Theory (B) 25 (1978) 105-124, doi: 10.1016/0095-8956(78)90030-8. Zbl0387.05020
- [2] D. Burns and S. Schuster, Every (p,p-2) graph is contained in its complement, J. Graph Theory 1 (1977) 277-279, doi: 10.1002/jgt.3190010308. Zbl0375.05046
- [3] D. Burns and S. Schuster, Embedding (n,n-1) graphs in their complements, Israel J. Math. 30 (1978) 313-320, doi: 10.1007/BF02761996. Zbl0379.05023
- [4] B. Ganter, J. Pelikan and L. Teirlinck, Small sprawling systems of equicardinal sets, Ars Combinatoria 4 (1977) 133-142. Zbl0418.05003
- [5] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory (B) 25 (1978) 295-302, doi: 10.1016/0095-8956(78)90005-9. Zbl0417.05037
- [6] M. Woźniak, Embedding graphs of small size, Discrete Applied Math. 51 (1994) 233-241, doi: 10.1016/0166-218X(94)90112-0. Zbl0807.05025
- [7] H.P. Yap, Packing of graphs - a survey, Discrete Math. 72 (1988) 395-404, doi: 10.1016/0012-365X(88)90232-4. Zbl0685.05036
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.