The generalized Neumann-Poincaré operator and its spectrum

Partyka Dariusz

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1997

Abstract

top
CONTENTSIntroduction..........................................................................................................................................................................5Preliminaries. Complex harmonic functions..........................................................................................................................7I. Spectral values and eigenvalues of a Jordan curve........................................................................................................19 1.1. On a boundary integral..............................................................................................................................................20 1.2. The generalized Cauchy singular integral operator C .......................................................................................23 1.3. The Hilbert transformation T Ω .............................................................................................................................28 1.4. The boundary space Ḣ²(∂Ω)......................................................................................................................................31 1.5. The generalized Neumann-Poincaré operator N ...............................................................................................36II. Quasisymmetric automorphisms of the unit circle...........................................................................................................41 2.1. The Douady-Earle extension E γ ..........................................................................................................................42 2.2. On an approximation of the Hersch-Pfluger distortion function Φ K ......................................................................46 2.3. On the maximal dilatation of the Douady-Earle extension..........................................................................................48 2.4. The Hilbert space H...................................................................................................................................................54 2.5. The linear operator B γ .........................................................................................................................................60III. The generalized harmonic conjugation operator............................................................................................................64 3.1. The generalized harmonic conjugation operator A γ .............................................................................................64 3.2. Spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle..............................................73 3.3. The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle..............................................80 3.4. Limiting properties of spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle............84IV. Spectral values of a quasicircle.....................................................................................................................................90 4.1. Characterizations of the boundary space Ḣ²(∂Ω).......................................................................................................91 4.2. Spaces symmetric with respect to a Jordan curve.....................................................................................................93 4.3. Plemelj’s formula for a quasicircle..............................................................................................................................96 4.4. The main spectral theorem for quasicircles.............................................................................................................103 4.5. Spectral values and eigenvalues of a quasicircle....................................................................................................108Appendix. The inner completion of pseudo-normed spaces............................................................................................114References......................................................................................................................................................................117List of symbols.................................................................................................................................................................122Index................................................................................................................................................................................1241991 Mathematics Subject Classification: Primary 30C62; Secondary 30F10, 45C05, 41A25.

How to cite

top

Partyka Dariusz. The generalized Neumann-Poincaré operator and its spectrum. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1997. <http://eudml.org/doc/271129>.

@book{PartykaDariusz1997,
abstract = {CONTENTSIntroduction..........................................................................................................................................................................5Preliminaries. Complex harmonic functions..........................................................................................................................7I. Spectral values and eigenvalues of a Jordan curve........................................................................................................19 1.1. On a boundary integral..............................................................................................................................................20 1.2. The generalized Cauchy singular integral operator $C_$.......................................................................................23 1.3. The Hilbert transformation $T_Ω$.............................................................................................................................28 1.4. The boundary space Ḣ²(∂Ω)......................................................................................................................................31 1.5. The generalized Neumann-Poincaré operator $N_$...............................................................................................36II. Quasisymmetric automorphisms of the unit circle...........................................................................................................41 2.1. The Douady-Earle extension $E_γ$..........................................................................................................................42 2.2. On an approximation of the Hersch-Pfluger distortion function $Φ_K$......................................................................46 2.3. On the maximal dilatation of the Douady-Earle extension..........................................................................................48 2.4. The Hilbert space H...................................................................................................................................................54 2.5. The linear operator $B_γ$.........................................................................................................................................60III. The generalized harmonic conjugation operator............................................................................................................64 3.1. The generalized harmonic conjugation operator $A_γ$.............................................................................................64 3.2. Spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle..............................................73 3.3. The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle..............................................80 3.4. Limiting properties of spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle............84IV. Spectral values of a quasicircle.....................................................................................................................................90 4.1. Characterizations of the boundary space Ḣ²(∂Ω).......................................................................................................91 4.2. Spaces symmetric with respect to a Jordan curve.....................................................................................................93 4.3. Plemelj’s formula for a quasicircle..............................................................................................................................96 4.4. The main spectral theorem for quasicircles.............................................................................................................103 4.5. Spectral values and eigenvalues of a quasicircle....................................................................................................108Appendix. The inner completion of pseudo-normed spaces............................................................................................114References......................................................................................................................................................................117List of symbols.................................................................................................................................................................122Index................................................................................................................................................................................1241991 Mathematics Subject Classification: Primary 30C62; Secondary 30F10, 45C05, 41A25.},
author = {Partyka Dariusz},
keywords = {boundary limiting values of harmonic functions; Cauchy integral; Cauchy singular integral; completion of pseudo-normed spaces; Dirichlet integral; Douady-Earle extension; eigenvalues and spectral values of a linear operator; extremal quasiconformal mappings; Grunsky inequality; Grunsky matrixes; harmonic conjugation operator; harmonic functions; Hersch-Pfluger distortion function; Hilbert transformation; Neumann-Poincaré kernel; Neumann-Poincaré operator; Plemelj's formula; Poisson integral; quasiconformal mappings in the plane; quasisymmetric automorphisms; quasisymmetric functions; special functions; Teichmüller mappings; univalent functions; universal Teichmüller space; welding homeomorphism; quasiconformal maps in the plane},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {The generalized Neumann-Poincaré operator and its spectrum},
url = {http://eudml.org/doc/271129},
year = {1997},
}

TY - BOOK
AU - Partyka Dariusz
TI - The generalized Neumann-Poincaré operator and its spectrum
PY - 1997
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction..........................................................................................................................................................................5Preliminaries. Complex harmonic functions..........................................................................................................................7I. Spectral values and eigenvalues of a Jordan curve........................................................................................................19 1.1. On a boundary integral..............................................................................................................................................20 1.2. The generalized Cauchy singular integral operator $C_$.......................................................................................23 1.3. The Hilbert transformation $T_Ω$.............................................................................................................................28 1.4. The boundary space Ḣ²(∂Ω)......................................................................................................................................31 1.5. The generalized Neumann-Poincaré operator $N_$...............................................................................................36II. Quasisymmetric automorphisms of the unit circle...........................................................................................................41 2.1. The Douady-Earle extension $E_γ$..........................................................................................................................42 2.2. On an approximation of the Hersch-Pfluger distortion function $Φ_K$......................................................................46 2.3. On the maximal dilatation of the Douady-Earle extension..........................................................................................48 2.4. The Hilbert space H...................................................................................................................................................54 2.5. The linear operator $B_γ$.........................................................................................................................................60III. The generalized harmonic conjugation operator............................................................................................................64 3.1. The generalized harmonic conjugation operator $A_γ$.............................................................................................64 3.2. Spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle..............................................73 3.3. The smallest positive eigenvalue of a quasisymmetric automorphism of the unit circle..............................................80 3.4. Limiting properties of spectral values and eigenvalues of a quasisymmetric automorphism of the unit circle............84IV. Spectral values of a quasicircle.....................................................................................................................................90 4.1. Characterizations of the boundary space Ḣ²(∂Ω).......................................................................................................91 4.2. Spaces symmetric with respect to a Jordan curve.....................................................................................................93 4.3. Plemelj’s formula for a quasicircle..............................................................................................................................96 4.4. The main spectral theorem for quasicircles.............................................................................................................103 4.5. Spectral values and eigenvalues of a quasicircle....................................................................................................108Appendix. The inner completion of pseudo-normed spaces............................................................................................114References......................................................................................................................................................................117List of symbols.................................................................................................................................................................122Index................................................................................................................................................................................1241991 Mathematics Subject Classification: Primary 30C62; Secondary 30F10, 45C05, 41A25.
LA - eng
KW - boundary limiting values of harmonic functions; Cauchy integral; Cauchy singular integral; completion of pseudo-normed spaces; Dirichlet integral; Douady-Earle extension; eigenvalues and spectral values of a linear operator; extremal quasiconformal mappings; Grunsky inequality; Grunsky matrixes; harmonic conjugation operator; harmonic functions; Hersch-Pfluger distortion function; Hilbert transformation; Neumann-Poincaré kernel; Neumann-Poincaré operator; Plemelj's formula; Poisson integral; quasiconformal mappings in the plane; quasisymmetric automorphisms; quasisymmetric functions; special functions; Teichmüller mappings; univalent functions; universal Teichmüller space; welding homeomorphism; quasiconformal maps in the plane
UR - http://eudml.org/doc/271129
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.