Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group
Bernd Kirchheim[1]; Francesco Serra Cassano[2]
- [1] Dipartimento di Matematica Mathematical Institute University of Oxford 24-29 St Giles’ Oxford, OX1 3LB, UK
- [2] Dipartimento di Matematica Università di Trento Via Sommarive, 14 38050 Povo (Trento), Italia
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2004)
- Volume: 3, Issue: 4, page 871-896
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topKirchheim, Bernd, and Serra Cassano, Francesco. "Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 3.4 (2004): 871-896. <http://eudml.org/doc/84551>.
@article{Kirchheim2004,
abstract = {We construct an intrinsic regular surface in the first Heisenberg group $\mathbb \{H\}^\{1\} \equiv \mathbb \{R\}^\{3\}$ equipped wiht its Carnot-Carathéodory metric which has euclidean Hausdorff dimension $2.5$. Moreover we prove that each intrinsic regular surface in this setting is a $2$-dimensional topological manifold admitting a $\frac\{1\}\{2\}$-Hölder continuous parameterization.},
affiliation = {Dipartimento di Matematica Mathematical Institute University of Oxford 24-29 St Giles’ Oxford, OX1 3LB, UK; Dipartimento di Matematica Università di Trento Via Sommarive, 14 38050 Povo (Trento), Italia},
author = {Kirchheim, Bernd, Serra Cassano, Francesco},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {4},
pages = {871-896},
publisher = {Scuola Normale Superiore, Pisa},
title = {Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group},
url = {http://eudml.org/doc/84551},
volume = {3},
year = {2004},
}
TY - JOUR
AU - Kirchheim, Bernd
AU - Serra Cassano, Francesco
TI - Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2004
PB - Scuola Normale Superiore, Pisa
VL - 3
IS - 4
SP - 871
EP - 896
AB - We construct an intrinsic regular surface in the first Heisenberg group $\mathbb {H}^{1} \equiv \mathbb {R}^{3}$ equipped wiht its Carnot-Carathéodory metric which has euclidean Hausdorff dimension $2.5$. Moreover we prove that each intrinsic regular surface in this setting is a $2$-dimensional topological manifold admitting a $\frac{1}{2}$-Hölder continuous parameterization.
LA - eng
UR - http://eudml.org/doc/84551
ER -
References
top- [1] L. Ambrosio – B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527-555. Zbl0966.28002MR1800768
- [2] L. Ambrosio – B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1-80. Zbl0984.49025MR1794185
- [3] L. Ambrosio – V. Magnani, Weak differentiability of function on stratified groups, Math. Z. 245 (2003), 123-153. Zbl1048.49030MR2023957
- [4] Z. Balogh, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003), 63-84. Zbl1051.53024MR2021034
- [5] Z. Balogh – M. Rickly – F. Serra Cassano, Comparison of Hausdorff measures with respect to the Euclidean and the Heisenberg metric, Publ. Mat. 47 (2003), 237-259. Zbl1060.28002MR1970902
- [6] Z. Balogh – H. Hofer-Isenegger – J. T. Tyson, Lifts of Lipischitz maps and horizontal fractals in the Heisenberg group, Preprint (2003).
- [7] A. Bellaïche, “The tangent space in subriemannian geometry”, In: “Subriemannian Geometry", Progress in Mathematics 144, A. Bellaiche – J. Risler (eds.), Birkhauser Verlag, Basel, 1996. Zbl0862.53031MR1421822
- [8] G. Bellettini – M. Paolini – S. Venturini, Some results in surface measure in Calculus of Variations, Ann. Mat. Pura Appl. (4) 170 (1996), 329-357. Zbl0890.49020MR1441625
- [9] M. Biroli – U. Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), 37-44. Zbl0837.31006MR1340280
- [10] L. Capogna – D. Danielli – N. Garofalo, The geometric Sobolev embedding for vector fields and the isoperimetric inequality, Comm. Anal. Geom. 12 (1994), 203-215. Zbl0864.46018MR1312686
- [11] T. Coulhon – L. Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993), 293-314. Zbl0782.53066MR1232845
- [12] M. Chlebík, Hausdorff lower -densities and rectifiability of sets in -space, Preprint.
- [13] D. Danielli – N. Garofalo – D. M. Nhieu, Traces inequalities for Carnot–Carathèodory spaces and applications, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 27 (1998), 195-252. Zbl0938.46036MR1664688
- [14] G. David – S. Semmes, “Fractured Fractals and Broken Dreams. Self-Similar Geometry through Metric and Measure”, Oxford University Press, 1997. Zbl0887.54001MR1616732
- [15] G. David – T. Toro, Reifenberg flat metric spaces, snowballs, and embeddings, Math. Ann. 315 (1999), 641-710. Zbl0944.53004MR1731465
- [16] E. De Giorgi, Su una teoria generale della misura -dimensionale in uno spazio ad dimensioni, Ann.Mat.Pura Appl. (4) 36 (1954), 191-213. Zbl0055.28504MR62214
- [17] E. De Giorgi, Nuovi teoremi relativi alle misure -dimensionali in uno spazio ad dimensioni, Ricerche Mat. 4 (1955), 95-113. Zbl0066.29903MR74499
- [18] E. De Giorgi – F. Colombini – L. C. Piccinini, “Frontiere orientate di misura minima e questioni collegate”, Scuola Normale Superiore, Pisa, 1972. Zbl0296.49031MR493669
- [19] E. De Giorgi, Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 285-292. Zbl0862.49028MR1366062
- [20] E. De Giorgi, Un progetto di teoria unitaria delle correnti, forme differenziali, varietà ambientate in spazi metrici, funzioni a variazione limitata, Manuscript, (1995).
- [21] E. De Giorgi, Un progetto di teoria delle correnti, forme differenziali e varietà non orientate in spazi metrici, In: “Variational Methods, Non Linear Analysys and Differential Equations in Honour of J. P. Cecconi”, (Genova 1993), M. Chicco et al. (eds.), ECIG, Genova, 67-71.
- [22] H. Federer, “Geometric Measure Theory”, Springer, 1969. Zbl0176.00801MR257325
- [23] B. Franchi – S. Gallot – R. L. Wheeden, Sobolev and isoperimetric inequalities for degenerate metrics, Math. Ann. 300 (1994), 557-571. Zbl0830.46027MR1314734
- [24] B. Franchi – R. Serapioni – F. Serra Cassano, Meyers-Serrin Type Theorems and Relaxation of Variational Integrals Depending Vector Fields, Houston J. Math. 22 (1996), 859-889. Zbl0876.49014MR1437714
- [25] B. Franchi – R. Serapioni – F. Serra Cassano, Sur les ensembles des périmètre fini dans le groupe de Heisenberg, C.R. Acad. Sci. Paris Ser. I Math. 329 (1999), 183-188. Zbl1033.49045MR1711057
- [26] B. Franchi – R. Serapioni – F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479-531. Zbl1057.49032MR1871966
- [27] B. Franchi – R. Serapioni – F. Serra Cassano, Regular hypersurfaces, intrinsic perimeter and implicit function theorem in Carnot groups, Comm. Anal. Geom. 11 (2003) 909-944. Zbl1077.22008MR2032504
- [28] B. Franchi – R. Serapioni – F. Serra Cassano, Rectifiability and perimeter in step 2 groups, Proceedings of Equadiff10, 2001, Math. Bohem. 127 (2002), 219-228. Zbl1018.49029MR1981527
- [29] B. Franchi – R. Serapioni – F. Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), 421-466. Zbl1064.49033MR1984849
- [30] N. Garofalo – D. M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144. Zbl0880.35032MR1404326
- [31] M. Gromov, “Carnot-Carathéodory spaces seen from within”, In: “Subriemannian Geometry", Progress in Mathematics 144, A. Bellaiche and J. Risler (eds.), Birkhauser Verlag, Basel, 1996. Zbl0864.53025MR1421823
- [32] P. Hajłasz – P. Koskela, “Sobolev met Poincare”, Mem. AMS 145, 2000. Zbl0954.46022MR1683160
- [33] J. Heinonen – P. Koskela – N. Shanmuganlingam – J. Tyson, Sobolev classes of Banach space-valued functions and quasiconformal mappings, J. Anal. Math. 85 (2001), 87-139. Zbl1013.46023MR1869604
- [34] B. Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), 113-123. Zbl0806.28004MR1189747
- [35] B. Kirchheim – V. Magnani, A counterexample to the metric differentiability, Proc. Edinburgh Math. Soc. 46 (2003), 221-227. Zbl1059.26007MR1961822
- [36] A. Korányi – H. M. Reimann, Foundation for the Theory of Quasiconformal Mappings on the Heisenberg Group, Adv. Math. 111 (1995), 1-87. Zbl0876.30019
- [37] A. Lorent, Rectifiability of measures with locally uniform cube density, Proc. London Math. Soc. (3) 86 (2003), 153-249. Zbl1042.28002MR1971467
- [38] V. Magnani, Differentiability and Area formula on stratified Lie groups, Houston J. Math. 27 (2001), 297-323. Zbl0983.22009MR1874099
- [39] V. Magnani, Characteristic points, rectifiability and perimeter measure on stratified groups, Preprint (2003). Zbl1107.22004MR2262196
- [40] M. A. Martin – P. Mattila, Hausorff measures, Hölder continuous maps and self-similar fractals, Math. Proc. Cambridge Philos. Soc. 114 (1993), 37-42. Zbl0783.28005MR1219912
- [41] M. A. Martin – P. Mattila, On The Parametrization of Self-Similar And Other Fractal Sets, Trans. Amer. Math. Soc. 128 (2000), 2641-2648. Zbl0951.28005MR1664402
- [42] P. Mattila, “Geometry of sets and measures in Euclidean spaces”, Cambridge U.P., 1995. Zbl0819.28004MR1333890
- [43] J. Mitchell, On Carnot-Carathèodory metrics, J. Differential Geom. 21 (1985), 35-45. Zbl0554.53023MR806700
- [44] R. Monti – F. Serra Cassano, Surface measures in Carnot-Carathéodory spaces, Calc. Var. Partial Differential Equations 13 (2001), 339-376. Zbl1032.49045MR1865002
- [45] A. Nagel – E. M. Stein – S. Wainger, Balls and metrics defined by vector fields I: Basic properties, Acta Math. 155 (1985), 103-147. Zbl0578.32044MR793239
- [46] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1-60. Zbl0678.53042MR979599
- [47] P. Pansu, Une inégalité isopérimétrique sur le groupe de Heisenberg, C.R. Acad. Sci. Paris 295 I (1982), 127-130. Zbl0502.53039MR676380
- [48] P. Pansu, Geometrie du Group d’Heisenberg, These pour le titre de Docteur 3ème cycle, Universite Paris VII, (1982).
- [49] S. D. Pauls, A notion of rectifiability modelled on Carnot groups, Indiana Univ. Math. J. 53 (2004), 49-81. Zbl1076.49025MR2048183
- [50] D. Preiss – J. Tišer, On Besicovitch -problem, J. London Math. Soc. 45 (1992), 279-287. Zbl0762.28003
- [51] E. Reifenberg, Solution of the Plateau problem for m-dimensional surfaces of varying topological type, Acta Math. 104 (1960), 198-223. Zbl0099.08503MR114145
- [52] S. Semmes, Chord- arc surfaces with small constant I, Adv. Math. 85 (1991), 198-223. Zbl0733.42015MR1093006
- [53] S. Semmes, Chord- arc surfaces with small constant II, Adv. Math. 88 (1991), 170-189. Zbl0733.42016MR1120612
- [54] S. Semmes, On the non existence of bilipschitz parameterization and geometric problems about weights, Rev. Mat. Iberoamericana 12 (1996), 337-410. Zbl0858.46017
- [55] S. Semmes, Good metric spaces without good parameterization, Rev. Mat. Iberoamericana 12 (1996), 187-275. Zbl0854.57018MR1387590
- [56] L. Simon, “Lectures on Geometric Measure Theory”, Proc. Centre for Math. Anal., Australian Nat. Univ. 3, 1983. Zbl0546.49019MR756417
- [57] E. M. Stein, “Harmonic Analysis”, Princeton University Press, 1993. Zbl0821.42001MR1232192
- [58] R. Strichartz, Self-similarity on nilpotent Lie groups, Contemp. Math. 140 (1992), 123-157. Zbl0797.43004MR1197594
- [59] T. Toro, Geometric conditions and existence of bi-lipschitz parameterizations, Duke Math. J. 77 (1995), 193-227. Zbl0847.42011MR1317632
- [60] N. Th. Varopoulos, Analysis on Lie Groups, J. Funct. Anal. 76 (1988), 346-410. Zbl0634.22008MR924464
- [61] N. Th. Varopoulos – L. Saloff-Coste – T. Coulhon, “Analysis and Geometry on Groups”, Cambridge University Press, Cambridge, 1992. Zbl1179.22009MR1218884
- [62] S. K. Vodop’yanov, -differentiability on Carnot groups in different topologies and related topics, Proc. on Analysis and Geometry, 603-670, Sobolev Institute Press, Novosibirsk, 2000. Zbl0992.58005MR1847541
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.