Uniform (s)-boundedness and regularity for (l)-group-valued measures

Antonio Boccuto; Domenico Candeloro

Open Mathematics (2011)

  • Volume: 9, Issue: 2, page 433-440
  • ISSN: 2391-5455


Some new results about uniform (s)-boundedness for regular (l)-group-valued set functions are given.

How to cite


Antonio Boccuto, and Domenico Candeloro. "Uniform (s)-boundedness and regularity for (l)-group-valued measures." Open Mathematics 9.2 (2011): 433-440. <http://eudml.org/doc/268941>.

abstract = {Some new results about uniform (s)-boundedness for regular (l)-group-valued set functions are given.},
author = {Antonio Boccuto, Domenico Candeloro},
journal = {Open Mathematics},
keywords = {(l)-group; Order convergence; Brooks-Jewett theorem; Regular set function; Uniform (s)-boundedness; ()-group; order convergence; regular set function; uniform ()-boundedness},
language = {eng},
number = {2},
pages = {433-440},
title = {Uniform (s)-boundedness and regularity for (l)-group-valued measures},
url = {http://eudml.org/doc/268941},
volume = {9},
year = {2011},

AU - Antonio Boccuto
AU - Domenico Candeloro
TI - Uniform (s)-boundedness and regularity for (l)-group-valued measures
JO - Open Mathematics
PY - 2011
VL - 9
IS - 2
SP - 433
EP - 440
AB - Some new results about uniform (s)-boundedness for regular (l)-group-valued set functions are given.
LA - eng
KW - (l)-group; Order convergence; Brooks-Jewett theorem; Regular set function; Uniform (s)-boundedness; ()-group; order convergence; regular set function; uniform ()-boundedness
UR - http://eudml.org/doc/268941
ER -


  1. [1] Barbieri G., On the Dieudonné theorem, Sci. Math. Jpn., 2009, 70(3), 279–284 Zbl1188.28015
  2. [2] Bernau S.J., Unique representation of Archimedean lattice groups and normal Archimedean lattice rings, Proc. London Math. Soc, 1965, 15, 599–631 http://dx.doi.org/10.1112/plms/s3-15.1.599 Zbl0134.10802
  3. [3] Boccuto A., Dieudonné-type theorems for means with values in Riesz spaces, Tatra Mt. Math. Publ., 1996, 8, 29–42 Zbl0918.28009
  4. [4] Boccuto A., Candeloro D., Dieudonné-type theorems for set functions with values in (Z)-groups, Real Anal. Exchange, 2001/02, 27(2), 473–484 Zbl1067.28011
  5. [5] Boccuto A., Candeloro D., Uniform s-boundedness and convergence results for measures with values in complete l-groups, J. Math. Anal. Appl., 2002, 265(1), 170–194 http://dx.doi.org/10.1006/jmaa.2001.7715 
  6. [6] Boccuto A., Candeloro D., Some new results about Brooks-Jewett and Dieudonné-type theorems in (Z)-groups, Kybernetika (Prague), 2010 (in press) Zbl1210.28015
  7. [7] Brooks J.K., On a theorem of Dieudonné, Adv. in Math., 1980, 36(2), 165–168 http://dx.doi.org/10.1016/0001-8708(80)90014-6 
  8. [8] Brooks J.K., Chacon R.V., Continuity and compactness of measures, Adv. in Math., 1980, 37(1), 16–26 http://dx.doi.org/10.1016/0001-8708(80)90023-7 
  9. [9] Candeloro D., Sui teoremi di Vitali-Hahn-Saks, Dieudonné e Nikodým, Rend. Circ. Mat. Palermo Suppl., 1985, 8, 439–445 
  10. [10] Candeloro D., Letta G., Sui teoremi di Vitali-Hahn-Saks e di Dieudonné, Rend. Accad. Naz. Sci. XL Mem. Mat., 1985, 9(1), 203–213 
  11. [11] De Lucia P., Pap E., Convergence theorems for set functions, In: Handbook on Measure Theory, vol. I, North-Holland, Amsterdam, 2002, 125–178 Zbl1034.28002
  12. [12] De Lucia P., Pap E., Cafiero approach to Dieudonné type theorems, J. Math. Anal. Appl., 2008, 337(2), 1151–1157 http://dx.doi.org/10.1016/j.jmaa.2007.03.113 Zbl1152.28015
  13. [13] Dieudonné J., Sur la convergence des suites de mesures de Radon, An. Acad. Brasil. Ciênc., 1951, 23, 21–38, 277–282 Zbl0043.11202
  14. [14] Luxemburg W.A.J., Zaanan A.C., Riesz Spaces I, North-Holland Mathematical Library, North-Holland, Amsterdam-London, 1971 
  15. [15] Ventriglia F., Dieudonnés theorem for non-additive set functions, J. Math. Anal. Appl., 2010, 367(1), 296–303 http://dx.doi.org/10.1016/j.jmaa.2010.01.017 Zbl1195.28004
  16. [16] Vulikh B.Z., Introduction to the Theory of Partially Ordered Spaces, Wolters-Noordhoff, Groningen, 1967 Zbl0186.44601
  17. [17] Wright J.D.M., The measure extension problem for vector lattices, Ann. Inst. Fourier (Grenoble), 1971, 21(4), 65–85 Zbl0215.48101

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.