Three-dimensional terminal toric flips
Osamu Fujino; Hiroshi Sato; Yukishige Takano; Hokuto Uehara
Open Mathematics (2009)
- Volume: 7, Issue: 1, page 46-53
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topOsamu Fujino, et al. "Three-dimensional terminal toric flips." Open Mathematics 7.1 (2009): 46-53. <http://eudml.org/doc/268945>.
@article{OsamuFujino2009,
abstract = {We describe three-dimensional terminal toric flips. We obtain the complete local description of three-dimensional terminal toric flips.},
author = {Osamu Fujino, Hiroshi Sato, Yukishige Takano, Hokuto Uehara},
journal = {Open Mathematics},
keywords = {Toric variety; Mori theory; Terminal flip; toric variety; terminal flip},
language = {eng},
number = {1},
pages = {46-53},
title = {Three-dimensional terminal toric flips},
url = {http://eudml.org/doc/268945},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Osamu Fujino
AU - Hiroshi Sato
AU - Yukishige Takano
AU - Hokuto Uehara
TI - Three-dimensional terminal toric flips
JO - Open Mathematics
PY - 2009
VL - 7
IS - 1
SP - 46
EP - 53
AB - We describe three-dimensional terminal toric flips. We obtain the complete local description of three-dimensional terminal toric flips.
LA - eng
KW - Toric variety; Mori theory; Terminal flip; toric variety; terminal flip
UR - http://eudml.org/doc/268945
ER -
References
top- [1] Fujino O., Equivariant completions of toric contraction morphisms, Tohoku Math. J., 2006, 58, 303–321 http://dx.doi.org/10.2748/tmj/1163775132[Crossref] Zbl1127.14047
- [2] Fujino O., Special termination and reduction to pl flips, In: Flips for 3-folds and 4-folds, Oxford University Press, 2007, 63–75 Zbl1286.14025
- [3] Fujino O., Sato H., Introduction to the toric Mori theory, Michigan Math. J., 2004, 52(3), 649–665 http://dx.doi.org/10.1307/mmj/1100623418[Crossref] Zbl1078.14019
- [4] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993 Zbl0813.14039
- [5] Ishida M., On the terminal toric singularities of dimension three, In: Goto S. (Ed.), Commutative Algebra, Karuizawa, Japan, 1982, 54–70
- [6] Ishida M., Iwashita N., Canonical cyclic quotient singularities of dimension three, Complex analytic singularities, 135–151, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987 Zbl0627.14002
- [7] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, 283–360, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987
- [8] Matsuki K., Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002 Zbl0988.14007
- [9] Oda T., Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15, Springer-Verlag, Berlin, 1988 Zbl0628.52002
- [10] Reid M., Decomposition of toric morphisms, Arithmetic and geometry II, 395–418, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983
- [11] Reid M., Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345–414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987
- [12] Sato H., Combinatorial descriptions of toric extremal contractions, Nagoya Math. J., 2005, 180, 111–120 Zbl1094.14037
- [13] Takano Y., On flipping contractions of three-dimensional toric varieties with non-ℚ-factorial terminal singularities, Master’s thesis, Tokyo Metropolitan University, 2008 (in Japanese)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.