Three-dimensional terminal toric flips

Osamu Fujino; Hiroshi Sato; Yukishige Takano; Hokuto Uehara

Open Mathematics (2009)

  • Volume: 7, Issue: 1, page 46-53
  • ISSN: 2391-5455

Abstract

top
We describe three-dimensional terminal toric flips. We obtain the complete local description of three-dimensional terminal toric flips.

How to cite

top

Osamu Fujino, et al. "Three-dimensional terminal toric flips." Open Mathematics 7.1 (2009): 46-53. <http://eudml.org/doc/268945>.

@article{OsamuFujino2009,
abstract = {We describe three-dimensional terminal toric flips. We obtain the complete local description of three-dimensional terminal toric flips.},
author = {Osamu Fujino, Hiroshi Sato, Yukishige Takano, Hokuto Uehara},
journal = {Open Mathematics},
keywords = {Toric variety; Mori theory; Terminal flip; toric variety; terminal flip},
language = {eng},
number = {1},
pages = {46-53},
title = {Three-dimensional terminal toric flips},
url = {http://eudml.org/doc/268945},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Osamu Fujino
AU - Hiroshi Sato
AU - Yukishige Takano
AU - Hokuto Uehara
TI - Three-dimensional terminal toric flips
JO - Open Mathematics
PY - 2009
VL - 7
IS - 1
SP - 46
EP - 53
AB - We describe three-dimensional terminal toric flips. We obtain the complete local description of three-dimensional terminal toric flips.
LA - eng
KW - Toric variety; Mori theory; Terminal flip; toric variety; terminal flip
UR - http://eudml.org/doc/268945
ER -

References

top
  1. [1] Fujino O., Equivariant completions of toric contraction morphisms, Tohoku Math. J., 2006, 58, 303–321 http://dx.doi.org/10.2748/tmj/1163775132[Crossref] Zbl1127.14047
  2. [2] Fujino O., Special termination and reduction to pl flips, In: Flips for 3-folds and 4-folds, Oxford University Press, 2007, 63–75 Zbl1286.14025
  3. [3] Fujino O., Sato H., Introduction to the toric Mori theory, Michigan Math. J., 2004, 52(3), 649–665 http://dx.doi.org/10.1307/mmj/1100623418[Crossref] Zbl1078.14019
  4. [4] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies 131, The William H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993 Zbl0813.14039
  5. [5] Ishida M., On the terminal toric singularities of dimension three, In: Goto S. (Ed.), Commutative Algebra, Karuizawa, Japan, 1982, 54–70 
  6. [6] Ishida M., Iwashita N., Canonical cyclic quotient singularities of dimension three, Complex analytic singularities, 135–151, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987 Zbl0627.14002
  7. [7] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Algebraic geometry, Sendai, 1985, 283–360, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987 
  8. [8] Matsuki K., Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002 Zbl0988.14007
  9. [9] Oda T., Convex bodies and algebraic geometry, An introduction to the theory of toric varieties, Translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15, Springer-Verlag, Berlin, 1988 Zbl0628.52002
  10. [10] Reid M., Decomposition of toric morphisms, Arithmetic and geometry II, 395–418, Progr. Math., 36, Birkhäuser Boston, Boston, MA, 1983 
  11. [11] Reid M., Young person’s guide to canonical singularities, Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 345–414, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987 
  12. [12] Sato H., Combinatorial descriptions of toric extremal contractions, Nagoya Math. J., 2005, 180, 111–120 Zbl1094.14037
  13. [13] Takano Y., On flipping contractions of three-dimensional toric varieties with non-ℚ-factorial terminal singularities, Master’s thesis, Tokyo Metropolitan University, 2008 (in Japanese) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.