Scattering properties for a pair of Schrödinger type operators on cylindrical domains

Michael Melgaard

Open Mathematics (2007)

  • Volume: 5, Issue: 1, page 134-153
  • ISSN: 2391-5455

Abstract

top
Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.

How to cite

top

Michael Melgaard. "Scattering properties for a pair of Schrödinger type operators on cylindrical domains." Open Mathematics 5.1 (2007): 134-153. <http://eudml.org/doc/268980>.

@article{MichaelMelgaard2007,
abstract = {Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.},
author = {Michael Melgaard},
journal = {Open Mathematics},
keywords = {Lipschitz domains; scattering; limiting absorption principle; weighted Sobolev spaces; weighted Sobolev Spaces},
language = {eng},
number = {1},
pages = {134-153},
title = {Scattering properties for a pair of Schrödinger type operators on cylindrical domains},
url = {http://eudml.org/doc/268980},
volume = {5},
year = {2007},
}

TY - JOUR
AU - Michael Melgaard
TI - Scattering properties for a pair of Schrödinger type operators on cylindrical domains
JO - Open Mathematics
PY - 2007
VL - 5
IS - 1
SP - 134
EP - 153
AB - Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.
LA - eng
KW - Lipschitz domains; scattering; limiting absorption principle; weighted Sobolev spaces; weighted Sobolev Spaces
UR - http://eudml.org/doc/268980
ER -

References

top
  1. [1] W. O. Amrein, A. Boutet de Monvel and V. Georgescu: C 0 -groups, commutator methods and spectral theory of N-body Hamiltonians, Progress in Math. Ser., Vol. 135, Birkhäuser, 1996. Zbl0962.47500
  2. [2] M. Ben-Artzi and A. Devinatz: “The limiting absorption principle for partial differential operators”, Mem. Amer. Math. Soc., Vol. 66(364), (1987), pp. iv+70. Zbl0624.35068
  3. [3] M. Ben-Artzi, Y. Dermenjian and J.-C. Guillot: “Acoustic waves in perturbed stratified fluids: a spectral theory”, Comm. Partial Differential Equations, Vol. 14, (1989), pp. 479–517. Zbl0675.35065
  4. [4] J. Bergh and J. Löfström: Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Zbl0344.46071
  5. [5] A. Boutet de Monvel-Berthier and V. Georgescu: “Some developments and applications of the abstract Mourre theory”, Méthodes semi-classiques, Vol. 2, Nantes, 1991; Astérisque Vol. 210, (1992), pp. 27–48. Zbl0811.47005
  6. [6] A. Boutet de Monvel-Berthier and V. Georgescu: “Graded C*-algebras and many-body perturbation theory: II The Mourre estimate”, Astérisque, Vol. 210, (1992), pp. 75–96. Zbl0999.46032
  7. [7] A. Boutet de Monvel-Berthier, V. Georgescu and A. Soffer: “N-body Hamiltonians with hard-core interactions”, Rev. Math. Phys. Vol. 6, (1994), pp. 515–596. http://dx.doi.org/10.1142/S0129055X94000195 Zbl0818.35094
  8. [8] A. Boutet de Monvel-Berthier and D. Manda: “Spectral and scattering theory for wave propagation in perturbed stratified media”, J. Math. Anal. Appl., Vol. 91, (1995), pp. 137–167. http://dx.doi.org/10.1016/S0022-247X(85)71124-9 Zbl0831.35119
  9. [9] A. Boutet de Monvel and R. Purice: “The conjugate operator method: application to Dirac operators and to stratified media”, In: Evolution equations, Feshbach resonances, singular Hodge theory, Math. Top., Vol. 16, Wiley-VCH, Berlin, 1999, 243–286. Zbl0932.47035
  10. [10] J. Derezinski and C. Gérard: Scattering theory of classical and quantum N-particle systems, Springer-Verlag, Berlin, 1997. Zbl0899.47007
  11. [11] Y. Dermenjian, M. Durand and V. Iftimie: “Spectral analysis of an acoustic multistratified perturbed cylinder”. Comm. Partial Differential Equations, Vol. 23(1–2), (1998), pp. 141–169. Zbl0907.47046
  12. [12] D.E. Edmunds and W.D. Evans: Spectral theory and differential operators, Oxford University Press, New York, 1987. 
  13. [13] D.M. Eidus: “The principle of limiting amplitude”, Uspehi Mat. Nauk, Vol. 24(3), (1969), pp. 91–156. 
  14. [14] R. Froese and I. Herbst: “Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators”, Comm. Math. Phys., Vol. 87, (1982/83), pp. 429–447. http://dx.doi.org/10.1007/BF01206033 Zbl0509.35061
  15. [15] C.I. Goldstein: “Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I.”, Trans. Amer. Math. Soc., Vol. 135, (1969), pp. 1–31. http://dx.doi.org/10.2307/1995000 Zbl0174.41703
  16. [16] E. Hille and R.S. Phillips: Functional analysis and semi-groups (Third printing of the revised edition of 1957), American Mathematical Society, Providence, R. I., 1974. 
  17. [17] H. Iwashita: “Spectral theory for symmetric systems in an exterior domain”, Tsukuba J. Math., Vol. 11, (1987), pp. 241–256. Zbl0655.35059
  18. [18] K. A. Kiers and W. van Dijk: “Scattering in one dimension: the coupled Schrödinger equation, threshold behaviour and Levinson’s theorem”, J. Math. Phys., Vol. 37, (1996), pp. 6033–6059. http://dx.doi.org/10.1063/1.531762 Zbl0867.34072
  19. [19] D. Krejcirik and R.T. de Aldecoa: “The nature of the essential spectrum in curved quantum waveguides”, J. Phys. A, Vol. 37, (2004), pp. 5449–5466. http://dx.doi.org/10.1088/0305-4470/37/20/013 Zbl1062.81046
  20. [20] I. Laba: “Long-range one-particle scattering in a homogeneous magnetic field”, Duke Math. J., Vol. 70(2), (1993), pp. 283–303. http://dx.doi.org/10.1215/S0012-7094-93-07005-6 Zbl0809.47007
  21. [21] R.B. Lavine: “Commutators and scattering theory. II. A class of one body problems”, Indiana Univ. Math. J., Vol. 21, (1971/72), pp. 643–656. http://dx.doi.org/10.1512/iumj.1972.21.21050 Zbl0216.38501
  22. [22] W.C. Lyford: “Spectral analysis of the Laplacian in domains with cylinders”, Math Ann., Vol. 218, (1975), pp. 229–251. http://dx.doi.org/10.1007/BF01349697 Zbl0313.35060
  23. [23] M. Melgaard: “Spectral properties at a threshold for two-channel Hamiltonians. II. Applications to scattering theory”, J. Math. Anal. Appl., Vol. 256, (2001), pp. 568–586. http://dx.doi.org/10.1006/jmaa.2000.7326 
  24. [24] M. Melgaard: “Optimal limiting absorption principle for a Schrödinger type operator on a Lipschitz cylinder”, Manus. Math., Vol. 118, (2005), pp. 253–270. http://dx.doi.org/10.1007/s00229-005-0591-0 Zbl1121.35118
  25. [25] E. Mourre: “Absence of singular continuous spectrum for certain self-adjoint operators”, Comm. Math. Phys., Vol. 78, (1980/81), pp. 391–408. http://dx.doi.org/10.1007/BF01942331 Zbl0489.47010
  26. [26] P. Perry, I.M. Sigal and B. Simon: “Spectral analysis of N-body Schrödinger operators”, Ann. of Math., Vol. 114(2), (1981), pp. 519–567. http://dx.doi.org/10.2307/1971301 Zbl0477.35069
  27. [27] M. Reed and B. Simon: Methods of modern mathematical physics, I. Functional analysis, Academic Press, New York, 1980. 
  28. [28] M. Reed and B. Simon: Methods of modern mathematical physics, II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. Zbl0308.47002
  29. [29] M. Reed and B. Simon: Methods of modern mathematical physics, III. Scattering theory, Academic Press, New York, 1979. 
  30. [30] B. Simon: “A canonical decomposition for quadratic forms with applications to monotone convergence theorems”, J. Funct. Anal., Vol. 28, (1978), pp. 377–385. http://dx.doi.org/10.1016/0022-1236(78)90094-0 
  31. [31] H. Tamura: “Principle of limiting absorption for N-body Schrödinger operators - a remark on the commutator method”, Lett. Math. Phys., Vol. 17, (1989), pp. 31–36. http://dx.doi.org/10.1007/BF00420011 Zbl0719.35065
  32. [32] H. Tamura: “Resolvent estimates at low frequencies and limiting amplitude principle for acoustic propagators”, J. Math. Soc. Japan, Vol. 41, (1989), pp. 549–575. http://dx.doi.org/10.2969/jmsj/04140549 Zbl0722.35060
  33. [33] R. Weder: “Spectral analysis of strongly propagative systems”, J. Reine Angew. Math, Vol. 354, (1984), pp. 95–122. Zbl0541.35012

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.