Scattering properties for a pair of Schrödinger type operators on cylindrical domains
Open Mathematics (2007)
- Volume: 5, Issue: 1, page 134-153
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMichael Melgaard. "Scattering properties for a pair of Schrödinger type operators on cylindrical domains." Open Mathematics 5.1 (2007): 134-153. <http://eudml.org/doc/268980>.
@article{MichaelMelgaard2007,
abstract = {Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.},
author = {Michael Melgaard},
journal = {Open Mathematics},
keywords = {Lipschitz domains; scattering; limiting absorption principle; weighted Sobolev spaces; weighted Sobolev Spaces},
language = {eng},
number = {1},
pages = {134-153},
title = {Scattering properties for a pair of Schrödinger type operators on cylindrical domains},
url = {http://eudml.org/doc/268980},
volume = {5},
year = {2007},
}
TY - JOUR
AU - Michael Melgaard
TI - Scattering properties for a pair of Schrödinger type operators on cylindrical domains
JO - Open Mathematics
PY - 2007
VL - 5
IS - 1
SP - 134
EP - 153
AB - Strong asymptotic completeness is shown for a pair of Schrödinger type operators on a cylindrical Lipschitz domain. A key ingredient is a limiting absorption principle valid in a scale of weighted (local) Sobolev spaces with respect to the uniform topology. The results are based on a refined version of Mourre’s method within the context of pseudo-selfadjoint operators.
LA - eng
KW - Lipschitz domains; scattering; limiting absorption principle; weighted Sobolev spaces; weighted Sobolev Spaces
UR - http://eudml.org/doc/268980
ER -
References
top- [1] W. O. Amrein, A. Boutet de Monvel and V. Georgescu: C 0 -groups, commutator methods and spectral theory of N-body Hamiltonians, Progress in Math. Ser., Vol. 135, Birkhäuser, 1996. Zbl0962.47500
- [2] M. Ben-Artzi and A. Devinatz: “The limiting absorption principle for partial differential operators”, Mem. Amer. Math. Soc., Vol. 66(364), (1987), pp. iv+70. Zbl0624.35068
- [3] M. Ben-Artzi, Y. Dermenjian and J.-C. Guillot: “Acoustic waves in perturbed stratified fluids: a spectral theory”, Comm. Partial Differential Equations, Vol. 14, (1989), pp. 479–517. Zbl0675.35065
- [4] J. Bergh and J. Löfström: Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Zbl0344.46071
- [5] A. Boutet de Monvel-Berthier and V. Georgescu: “Some developments and applications of the abstract Mourre theory”, Méthodes semi-classiques, Vol. 2, Nantes, 1991; Astérisque Vol. 210, (1992), pp. 27–48. Zbl0811.47005
- [6] A. Boutet de Monvel-Berthier and V. Georgescu: “Graded C*-algebras and many-body perturbation theory: II The Mourre estimate”, Astérisque, Vol. 210, (1992), pp. 75–96. Zbl0999.46032
- [7] A. Boutet de Monvel-Berthier, V. Georgescu and A. Soffer: “N-body Hamiltonians with hard-core interactions”, Rev. Math. Phys. Vol. 6, (1994), pp. 515–596. http://dx.doi.org/10.1142/S0129055X94000195 Zbl0818.35094
- [8] A. Boutet de Monvel-Berthier and D. Manda: “Spectral and scattering theory for wave propagation in perturbed stratified media”, J. Math. Anal. Appl., Vol. 91, (1995), pp. 137–167. http://dx.doi.org/10.1016/S0022-247X(85)71124-9 Zbl0831.35119
- [9] A. Boutet de Monvel and R. Purice: “The conjugate operator method: application to Dirac operators and to stratified media”, In: Evolution equations, Feshbach resonances, singular Hodge theory, Math. Top., Vol. 16, Wiley-VCH, Berlin, 1999, 243–286. Zbl0932.47035
- [10] J. Derezinski and C. Gérard: Scattering theory of classical and quantum N-particle systems, Springer-Verlag, Berlin, 1997. Zbl0899.47007
- [11] Y. Dermenjian, M. Durand and V. Iftimie: “Spectral analysis of an acoustic multistratified perturbed cylinder”. Comm. Partial Differential Equations, Vol. 23(1–2), (1998), pp. 141–169. Zbl0907.47046
- [12] D.E. Edmunds and W.D. Evans: Spectral theory and differential operators, Oxford University Press, New York, 1987.
- [13] D.M. Eidus: “The principle of limiting amplitude”, Uspehi Mat. Nauk, Vol. 24(3), (1969), pp. 91–156.
- [14] R. Froese and I. Herbst: “Exponential bounds and absence of positive eigenvalues for N-body Schrödinger operators”, Comm. Math. Phys., Vol. 87, (1982/83), pp. 429–447. http://dx.doi.org/10.1007/BF01206033 Zbl0509.35061
- [15] C.I. Goldstein: “Eigenfunction expansions associated with the Laplacian for certain domains with infinite boundaries. I.”, Trans. Amer. Math. Soc., Vol. 135, (1969), pp. 1–31. http://dx.doi.org/10.2307/1995000 Zbl0174.41703
- [16] E. Hille and R.S. Phillips: Functional analysis and semi-groups (Third printing of the revised edition of 1957), American Mathematical Society, Providence, R. I., 1974.
- [17] H. Iwashita: “Spectral theory for symmetric systems in an exterior domain”, Tsukuba J. Math., Vol. 11, (1987), pp. 241–256. Zbl0655.35059
- [18] K. A. Kiers and W. van Dijk: “Scattering in one dimension: the coupled Schrödinger equation, threshold behaviour and Levinson’s theorem”, J. Math. Phys., Vol. 37, (1996), pp. 6033–6059. http://dx.doi.org/10.1063/1.531762 Zbl0867.34072
- [19] D. Krejcirik and R.T. de Aldecoa: “The nature of the essential spectrum in curved quantum waveguides”, J. Phys. A, Vol. 37, (2004), pp. 5449–5466. http://dx.doi.org/10.1088/0305-4470/37/20/013 Zbl1062.81046
- [20] I. Laba: “Long-range one-particle scattering in a homogeneous magnetic field”, Duke Math. J., Vol. 70(2), (1993), pp. 283–303. http://dx.doi.org/10.1215/S0012-7094-93-07005-6 Zbl0809.47007
- [21] R.B. Lavine: “Commutators and scattering theory. II. A class of one body problems”, Indiana Univ. Math. J., Vol. 21, (1971/72), pp. 643–656. http://dx.doi.org/10.1512/iumj.1972.21.21050 Zbl0216.38501
- [22] W.C. Lyford: “Spectral analysis of the Laplacian in domains with cylinders”, Math Ann., Vol. 218, (1975), pp. 229–251. http://dx.doi.org/10.1007/BF01349697 Zbl0313.35060
- [23] M. Melgaard: “Spectral properties at a threshold for two-channel Hamiltonians. II. Applications to scattering theory”, J. Math. Anal. Appl., Vol. 256, (2001), pp. 568–586. http://dx.doi.org/10.1006/jmaa.2000.7326
- [24] M. Melgaard: “Optimal limiting absorption principle for a Schrödinger type operator on a Lipschitz cylinder”, Manus. Math., Vol. 118, (2005), pp. 253–270. http://dx.doi.org/10.1007/s00229-005-0591-0 Zbl1121.35118
- [25] E. Mourre: “Absence of singular continuous spectrum for certain self-adjoint operators”, Comm. Math. Phys., Vol. 78, (1980/81), pp. 391–408. http://dx.doi.org/10.1007/BF01942331 Zbl0489.47010
- [26] P. Perry, I.M. Sigal and B. Simon: “Spectral analysis of N-body Schrödinger operators”, Ann. of Math., Vol. 114(2), (1981), pp. 519–567. http://dx.doi.org/10.2307/1971301 Zbl0477.35069
- [27] M. Reed and B. Simon: Methods of modern mathematical physics, I. Functional analysis, Academic Press, New York, 1980.
- [28] M. Reed and B. Simon: Methods of modern mathematical physics, II. Fourier analysis, self-adjointness, Academic Press, New York, 1975. Zbl0308.47002
- [29] M. Reed and B. Simon: Methods of modern mathematical physics, III. Scattering theory, Academic Press, New York, 1979.
- [30] B. Simon: “A canonical decomposition for quadratic forms with applications to monotone convergence theorems”, J. Funct. Anal., Vol. 28, (1978), pp. 377–385. http://dx.doi.org/10.1016/0022-1236(78)90094-0
- [31] H. Tamura: “Principle of limiting absorption for N-body Schrödinger operators - a remark on the commutator method”, Lett. Math. Phys., Vol. 17, (1989), pp. 31–36. http://dx.doi.org/10.1007/BF00420011 Zbl0719.35065
- [32] H. Tamura: “Resolvent estimates at low frequencies and limiting amplitude principle for acoustic propagators”, J. Math. Soc. Japan, Vol. 41, (1989), pp. 549–575. http://dx.doi.org/10.2969/jmsj/04140549 Zbl0722.35060
- [33] R. Weder: “Spectral analysis of strongly propagative systems”, J. Reine Angew. Math, Vol. 354, (1984), pp. 95–122. Zbl0541.35012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.