Mean values connected with the Dedekind zeta-function of a non-normal cubic field
Open Mathematics (2013)
- Volume: 11, Issue: 2, page 274-282
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Cassels J.W.S., Fröhlich A. (Eds.), Algebraic Number Theory, Brighton, September 1–17, 1965, Academic Press/Thompson Book, London/Washington, 1967
- [2] Chandrasekharan K., Good A., On the number of integral ideals in Galois extensions, Monatsh. Math., 1983, 95(2), 99–109 http://dx.doi.org/10.1007/BF01323653 Zbl0498.12009
- [3] Chandrasekharan K., Narasimhan R., The approximate functional equation for a class of zeta-functions, Math. Ann., 1963, 152, 30–64 http://dx.doi.org/10.1007/BF01343729 Zbl0116.27001
- [4] Deligne P., Serre J.-P., Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 1974, 7, 507–530 Zbl0321.10026
- [5] Fomenko O.M., Mean values associated with the Dedekind zeta function, J. Math. Sci. (N.Y.), 2008, 150(3), 2115–2122 http://dx.doi.org/10.1007/s10958-008-0126-9
- [6] Gelbart S., Jacquet H., A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup., 1978, 11(4), 471–542 Zbl0406.10022
- [7] Good A., The square mean of Dirichlet series associated with cusp forms, Mathematika, 1982, 29(2), 278–295 http://dx.doi.org/10.1112/S0025579300012377 Zbl0497.10016
- [8] Huxley M.N., Watt N., The number of ideals in a quadratic field II, Israel J. Math., 2000, 120(A), 125–153 Zbl0977.11049
- [9] Ivic A., Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar., 1980, 15(1–3), 157–181 Zbl0455.10025
- [10] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 Zbl1059.11001
- [11] Jutila M., Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lectures on Math. and Phys., 80, Springer, Berlin, 1987
- [12] Kim H.H., Functoriality for the exterior square of GL4 and symmetric fourth of GL2, J. Amer. Math. Soc., 2003, 16(1), 139–183 http://dx.doi.org/10.1090/S0894-0347-02-00410-1
- [13] Kim H.H., An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, Invent. Math., 2004, 156(3), 495–502 http://dx.doi.org/10.1007/s00222-003-0340-5 Zbl1086.11024
- [14] Kim H.H., Functoriality and number of solutions of congruences, Acta Arith., 2007, 128(3), 235–243 http://dx.doi.org/10.4064/aa128-3-4 Zbl1135.11051
- [15] Kim H.H., Shahidi F., Symmetric cube L-functions for GL2 are entire, Ann. of Math., 1999, 150(2), 645–662 http://dx.doi.org/10.2307/121091 Zbl0957.11026
- [16] Kim H.H., Shahidi F., Cuspidality of symmetric power with applications, Duke Math. J., 2002, 112(1), 177–197 http://dx.doi.org/10.1215/S0012-9074-02-11215-0 Zbl1074.11027
- [17] Kim H.H., Shahidi F., Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. of Math., 2002, 155(3), 837–893 http://dx.doi.org/10.2307/3062134
- [18] Landau E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea, New York, 1949 Zbl46.0242.02
- [19] Li X., Bounds for GL(3)×GL(2) L-functions and GL(3) L-functions, Ann. of Math., 2011, 173(1), 301–336 http://dx.doi.org/10.4007/annals.2011.173.1.8 Zbl1320.11046
- [20] Müller W., On the distribution of ideals in cubic number fields, Monatsh. Math., 1988, 106(3), 211–219 http://dx.doi.org/10.1007/BF01318682 Zbl0669.10068
- [21] Nowak W.G., On the distribution of integer ideals in algebraic number fields, Math. Nachr., 1993, 161, 59–74 http://dx.doi.org/10.1002/mana.19931610107 Zbl0803.11061
- [22] Pan C.D., Pan C.B., Fundamentals of Analytic Number Theory, Science Press, Beijing, 1991 (in Chinese)