Mean values connected with the Dedekind zeta-function of a non-normal cubic field
Open Mathematics (2013)
- Volume: 11, Issue: 2, page 274-282
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topGuangshi Lü. "Mean values connected with the Dedekind zeta-function of a non-normal cubic field." Open Mathematics 11.2 (2013): 274-282. <http://eudml.org/doc/269117>.
@article{GuangshiLü2013,
abstract = {After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. \[ S\_\{l,K\_3 \} (x) = \sum \nolimits \_\{m \leqslant x\} \{M^l (m)\} \]
, where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for \[ S\_\{2,K\_3 \} (x) \]
and \[ S\_\{3,K\_3 \} (x) \]
.},
author = {Guangshi Lü},
journal = {Open Mathematics},
keywords = {Cusp form; Number field; Dedekind zeta function; cusp form; number field},
language = {eng},
number = {2},
pages = {274-282},
title = {Mean values connected with the Dedekind zeta-function of a non-normal cubic field},
url = {http://eudml.org/doc/269117},
volume = {11},
year = {2013},
}
TY - JOUR
AU - Guangshi Lü
TI - Mean values connected with the Dedekind zeta-function of a non-normal cubic field
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 274
EP - 282
AB - After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. \[ S_{l,K_3 } (x) = \sum \nolimits _{m \leqslant x} {M^l (m)} \]
, where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for \[ S_{2,K_3 } (x) \]
and \[ S_{3,K_3 } (x) \]
.
LA - eng
KW - Cusp form; Number field; Dedekind zeta function; cusp form; number field
UR - http://eudml.org/doc/269117
ER -
References
top- [1] Cassels J.W.S., Fröhlich A. (Eds.), Algebraic Number Theory, Brighton, September 1–17, 1965, Academic Press/Thompson Book, London/Washington, 1967
- [2] Chandrasekharan K., Good A., On the number of integral ideals in Galois extensions, Monatsh. Math., 1983, 95(2), 99–109 http://dx.doi.org/10.1007/BF01323653 Zbl0498.12009
- [3] Chandrasekharan K., Narasimhan R., The approximate functional equation for a class of zeta-functions, Math. Ann., 1963, 152, 30–64 http://dx.doi.org/10.1007/BF01343729 Zbl0116.27001
- [4] Deligne P., Serre J.-P., Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 1974, 7, 507–530 Zbl0321.10026
- [5] Fomenko O.M., Mean values associated with the Dedekind zeta function, J. Math. Sci. (N.Y.), 2008, 150(3), 2115–2122 http://dx.doi.org/10.1007/s10958-008-0126-9
- [6] Gelbart S., Jacquet H., A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup., 1978, 11(4), 471–542 Zbl0406.10022
- [7] Good A., The square mean of Dirichlet series associated with cusp forms, Mathematika, 1982, 29(2), 278–295 http://dx.doi.org/10.1112/S0025579300012377 Zbl0497.10016
- [8] Huxley M.N., Watt N., The number of ideals in a quadratic field II, Israel J. Math., 2000, 120(A), 125–153 Zbl0977.11049
- [9] Ivic A., Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar., 1980, 15(1–3), 157–181 Zbl0455.10025
- [10] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 Zbl1059.11001
- [11] Jutila M., Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lectures on Math. and Phys., 80, Springer, Berlin, 1987
- [12] Kim H.H., Functoriality for the exterior square of GL4 and symmetric fourth of GL2, J. Amer. Math. Soc., 2003, 16(1), 139–183 http://dx.doi.org/10.1090/S0894-0347-02-00410-1
- [13] Kim H.H., An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, Invent. Math., 2004, 156(3), 495–502 http://dx.doi.org/10.1007/s00222-003-0340-5 Zbl1086.11024
- [14] Kim H.H., Functoriality and number of solutions of congruences, Acta Arith., 2007, 128(3), 235–243 http://dx.doi.org/10.4064/aa128-3-4 Zbl1135.11051
- [15] Kim H.H., Shahidi F., Symmetric cube L-functions for GL2 are entire, Ann. of Math., 1999, 150(2), 645–662 http://dx.doi.org/10.2307/121091 Zbl0957.11026
- [16] Kim H.H., Shahidi F., Cuspidality of symmetric power with applications, Duke Math. J., 2002, 112(1), 177–197 http://dx.doi.org/10.1215/S0012-9074-02-11215-0 Zbl1074.11027
- [17] Kim H.H., Shahidi F., Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. of Math., 2002, 155(3), 837–893 http://dx.doi.org/10.2307/3062134
- [18] Landau E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea, New York, 1949 Zbl46.0242.02
- [19] Li X., Bounds for GL(3)×GL(2) L-functions and GL(3) L-functions, Ann. of Math., 2011, 173(1), 301–336 http://dx.doi.org/10.4007/annals.2011.173.1.8 Zbl1320.11046
- [20] Müller W., On the distribution of ideals in cubic number fields, Monatsh. Math., 1988, 106(3), 211–219 http://dx.doi.org/10.1007/BF01318682 Zbl0669.10068
- [21] Nowak W.G., On the distribution of integer ideals in algebraic number fields, Math. Nachr., 1993, 161, 59–74 http://dx.doi.org/10.1002/mana.19931610107 Zbl0803.11061
- [22] Pan C.D., Pan C.B., Fundamentals of Analytic Number Theory, Science Press, Beijing, 1991 (in Chinese)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.