Mean values connected with the Dedekind zeta-function of a non-normal cubic field

Guangshi Lü

Open Mathematics (2013)

  • Volume: 11, Issue: 2, page 274-282
  • ISSN: 2391-5455

Abstract

top
After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. S l , K 3 ( x ) = m x M l ( m ) , where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for S 2 , K 3 ( x ) and S 3 , K 3 ( x ) .

How to cite

top

Guangshi Lü. "Mean values connected with the Dedekind zeta-function of a non-normal cubic field." Open Mathematics 11.2 (2013): 274-282. <http://eudml.org/doc/269117>.

@article{GuangshiLü2013,
abstract = {After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. \[ S\_\{l,K\_3 \} (x) = \sum \nolimits \_\{m \leqslant x\} \{M^l (m)\} \] , where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for \[ S\_\{2,K\_3 \} (x) \] and \[ S\_\{3,K\_3 \} (x) \] .},
author = {Guangshi Lü},
journal = {Open Mathematics},
keywords = {Cusp form; Number field; Dedekind zeta function; cusp form; number field},
language = {eng},
number = {2},
pages = {274-282},
title = {Mean values connected with the Dedekind zeta-function of a non-normal cubic field},
url = {http://eudml.org/doc/269117},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Guangshi Lü
TI - Mean values connected with the Dedekind zeta-function of a non-normal cubic field
JO - Open Mathematics
PY - 2013
VL - 11
IS - 2
SP - 274
EP - 282
AB - After Landau’s famous work, many authors contributed to some mean values connected with the Dedekind zetafunction. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K 3/ℚ, i.e. \[ S_{l,K_3 } (x) = \sum \nolimits _{m \leqslant x} {M^l (m)} \] , where M(m) denotes the number of integral ideals of the field K 3 of norm m and l ∈ ℕ. We improve the previous results for \[ S_{2,K_3 } (x) \] and \[ S_{3,K_3 } (x) \] .
LA - eng
KW - Cusp form; Number field; Dedekind zeta function; cusp form; number field
UR - http://eudml.org/doc/269117
ER -

References

top
  1. [1] Cassels J.W.S., Fröhlich A. (Eds.), Algebraic Number Theory, Brighton, September 1–17, 1965, Academic Press/Thompson Book, London/Washington, 1967 
  2. [2] Chandrasekharan K., Good A., On the number of integral ideals in Galois extensions, Monatsh. Math., 1983, 95(2), 99–109 http://dx.doi.org/10.1007/BF01323653 Zbl0498.12009
  3. [3] Chandrasekharan K., Narasimhan R., The approximate functional equation for a class of zeta-functions, Math. Ann., 1963, 152, 30–64 http://dx.doi.org/10.1007/BF01343729 Zbl0116.27001
  4. [4] Deligne P., Serre J.-P., Formes modulaires de poids 1, Ann. Sci. École Norm. Sup., 1974, 7, 507–530 Zbl0321.10026
  5. [5] Fomenko O.M., Mean values associated with the Dedekind zeta function, J. Math. Sci. (N.Y.), 2008, 150(3), 2115–2122 http://dx.doi.org/10.1007/s10958-008-0126-9 
  6. [6] Gelbart S., Jacquet H., A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. École Norm. Sup., 1978, 11(4), 471–542 Zbl0406.10022
  7. [7] Good A., The square mean of Dirichlet series associated with cusp forms, Mathematika, 1982, 29(2), 278–295 http://dx.doi.org/10.1112/S0025579300012377 Zbl0497.10016
  8. [8] Huxley M.N., Watt N., The number of ideals in a quadratic field II, Israel J. Math., 2000, 120(A), 125–153 Zbl0977.11049
  9. [9] Ivic A., Exponent pairs and the zeta function of Riemann, Studia Sci. Math. Hungar., 1980, 15(1–3), 157–181 Zbl0455.10025
  10. [10] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 Zbl1059.11001
  11. [11] Jutila M., Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lectures on Math. and Phys., 80, Springer, Berlin, 1987 
  12. [12] Kim H.H., Functoriality for the exterior square of GL4 and symmetric fourth of GL2, J. Amer. Math. Soc., 2003, 16(1), 139–183 http://dx.doi.org/10.1090/S0894-0347-02-00410-1 
  13. [13] Kim H.H., An example of non-normal quintic automorphic induction and modularity of symmetric powers of cusp forms of icosahedral type, Invent. Math., 2004, 156(3), 495–502 http://dx.doi.org/10.1007/s00222-003-0340-5 Zbl1086.11024
  14. [14] Kim H.H., Functoriality and number of solutions of congruences, Acta Arith., 2007, 128(3), 235–243 http://dx.doi.org/10.4064/aa128-3-4 Zbl1135.11051
  15. [15] Kim H.H., Shahidi F., Symmetric cube L-functions for GL2 are entire, Ann. of Math., 1999, 150(2), 645–662 http://dx.doi.org/10.2307/121091 Zbl0957.11026
  16. [16] Kim H.H., Shahidi F., Cuspidality of symmetric power with applications, Duke Math. J., 2002, 112(1), 177–197 http://dx.doi.org/10.1215/S0012-9074-02-11215-0 Zbl1074.11027
  17. [17] Kim H.H., Shahidi F., Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. of Math., 2002, 155(3), 837–893 http://dx.doi.org/10.2307/3062134 
  18. [18] Landau E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea, New York, 1949 Zbl46.0242.02
  19. [19] Li X., Bounds for GL(3)×GL(2) L-functions and GL(3) L-functions, Ann. of Math., 2011, 173(1), 301–336 http://dx.doi.org/10.4007/annals.2011.173.1.8 Zbl1320.11046
  20. [20] Müller W., On the distribution of ideals in cubic number fields, Monatsh. Math., 1988, 106(3), 211–219 http://dx.doi.org/10.1007/BF01318682 Zbl0669.10068
  21. [21] Nowak W.G., On the distribution of integer ideals in algebraic number fields, Math. Nachr., 1993, 161, 59–74 http://dx.doi.org/10.1002/mana.19931610107 Zbl0803.11061
  22. [22] Pan C.D., Pan C.B., Fundamentals of Analytic Number Theory, Science Press, Beijing, 1991 (in Chinese) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.