Mean values related to the Dedekind zeta-function
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1265-1274
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTang, Hengcai, and Wang, Youjun. "Mean values related to the Dedekind zeta-function." Czechoslovak Mathematical Journal 74.4 (2024): 1265-1274. <http://eudml.org/doc/299622>.
@article{Tang2024,
abstract = {Let $K/\mathbb \{Q\}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _\{K\}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., \[ \sum \_\{n\le x\}a\_K^2(n)=x P\_1(\log x)+O(x^\{5/7+\epsilon \}),\quad \sum \_\{n\le x\}a\_K^3(n)=x P\_4(\log x)+O(X^\{321/356+\epsilon \}), \]
where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.},
author = {Tang, Hengcai, Wang, Youjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {cusp form; Dedekind zeta-function; $L$-function},
language = {eng},
number = {4},
pages = {1265-1274},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mean values related to the Dedekind zeta-function},
url = {http://eudml.org/doc/299622},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Tang, Hengcai
AU - Wang, Youjun
TI - Mean values related to the Dedekind zeta-function
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1265
EP - 1274
AB - Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., \[ \sum _{n\le x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\le x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), \]
where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.
LA - eng
KW - cusp form; Dedekind zeta-function; $L$-function
UR - http://eudml.org/doc/299622
ER -
References
top- Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
- Chakraborty, K., Krishnamoorthy, K., 10.1016/j.jnt.2021.08.008, J. Number Theory 238 (2022), 183-196. (2022) Zbl1505.11076MR4430097DOI10.1016/j.jnt.2021.08.008
- Fomenko, O. M., 10.1007/s10958-008-0126-9, J. Math. Sci. (N.Y.) 150 (2008), 2115-2122. (2008) MR2722976DOI10.1007/s10958-008-0126-9
- Good, A., 10.1112/S0025579300012377, Mathematika 29 (1982), 278-295. (1982) Zbl0497.10016MR0696884DOI10.1112/S0025579300012377
- Ivić, A., The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications, John Wiley & Sohns, New York (1985). (1985) Zbl0556.10026MR792089
- Ivić, A., On zeta-functions associated with Fourier coefficients of cusp forms, Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salermo (1992), 231-246. (1992) Zbl0787.11035MR1220467
- Jutila, M., Lectures on a Method in the Theory of Exponential Sums, Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). (1987) Zbl0671.10031MR0910497
- Kim, H. H., 10.4064/aa128-3-4, Acta Arith. 128 (2007), 235-243. (2007) Zbl1135.11051MR2313992DOI10.4064/aa128-3-4
- Lin, Y., Nunes, R., Qi, Z., 10.1093/imrn/rnac153, Int. Math. Res. Not. 2023 (2023), 11453-11470. (2023) Zbl1541.11046MR4609788DOI10.1093/imrn/rnac153
- Liu, H., Li, S., Zhang, D., 10.1142/S1793042116500251, Int. J. Number Theory 12 (2016), 427-443. (2016) Zbl1335.11031MR3461440DOI10.1142/S1793042116500251
- Liu, H., 10.1007/s12044-021-00648-1, Proc. Indian Acad. Sci., Math. Sci. 131 (2021), Article ID 48, 10 pages. (2021) Zbl1478.11112MR4344605DOI10.1007/s12044-021-00648-1
- Lü, G., 10.2478/s11533-012-0133-4, Cent. Eur. J. Math. 11 (2013), 274-282. (2013) Zbl1292.11108MR3000644DOI10.2478/s11533-012-0133-4
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.