Mean values related to the Dedekind zeta-function

Hengcai Tang; Youjun Wang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1265-1274
  • ISSN: 0011-4642

Abstract

top
Let K / be a nonnormal cubic extension which is given by an irreducible polynomial g ( x ) = x 3 + a x 2 + b x + c . Denote by ζ K ( s ) the Dedekind zeta-function of the field K and a K ( n ) the number of integral ideals in K with norm n . In this note, by the higher integral mean values and subconvexity bound of automorphic L -functions, the second and third moment of a K ( n ) is considered, i.e., n x a K 2 ( n ) = x P 1 ( log x ) + O ( x 5 / 7 + ϵ ) , n x a K 3 ( n ) = x P 4 ( log x ) + O ( X 321 / 356 + ϵ ) , where P 1 ( t ) , P 4 ( t ) are polynomials of degree 1, 4, respectively, ϵ > 0 is an arbitrarily small number.

How to cite

top

Tang, Hengcai, and Wang, Youjun. "Mean values related to the Dedekind zeta-function." Czechoslovak Mathematical Journal 74.4 (2024): 1265-1274. <http://eudml.org/doc/299622>.

@article{Tang2024,
abstract = {Let $K/\mathbb \{Q\}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _\{K\}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., \[ \sum \_\{n\le x\}a\_K^2(n)=x P\_1(\log x)+O(x^\{5/7+\epsilon \}),\quad \sum \_\{n\le x\}a\_K^3(n)=x P\_4(\log x)+O(X^\{321/356+\epsilon \}), \] where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.},
author = {Tang, Hengcai, Wang, Youjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {cusp form; Dedekind zeta-function; $L$-function},
language = {eng},
number = {4},
pages = {1265-1274},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Mean values related to the Dedekind zeta-function},
url = {http://eudml.org/doc/299622},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Tang, Hengcai
AU - Wang, Youjun
TI - Mean values related to the Dedekind zeta-function
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1265
EP - 1274
AB - Let $K/\mathbb {Q}$ be a nonnormal cubic extension which is given by an irreducible polynomial $g(x)=x^3+a x^2+b x+c$. Denote by $\zeta _{K}(s)$ the Dedekind zeta-function of the field $K$ and $a_K(n)$ the number of integral ideals in $K$ with norm $n$. In this note, by the higher integral mean values and subconvexity bound of automorphic $L$-functions, the second and third moment of $a_K(n)$ is considered, i.e., \[ \sum _{n\le x}a_K^2(n)=x P_1(\log x)+O(x^{5/7+\epsilon }),\quad \sum _{n\le x}a_K^3(n)=x P_4(\log x)+O(X^{321/356+\epsilon }), \] where $P_1(t)$, $P_4(t)$ are polynomials of degree 1, 4, respectively, $\epsilon >0$ is an arbitrarily small number.
LA - eng
KW - cusp form; Dedekind zeta-function; $L$-function
UR - http://eudml.org/doc/299622
ER -

References

top
  1. Bourgain, J., 10.1090/jams/860, J. Am. Math. Soc. 30 (2017), 205-224. (2017) Zbl1352.11065MR3556291DOI10.1090/jams/860
  2. Chakraborty, K., Krishnamoorthy, K., 10.1016/j.jnt.2021.08.008, J. Number Theory 238 (2022), 183-196. (2022) Zbl1505.11076MR4430097DOI10.1016/j.jnt.2021.08.008
  3. Fomenko, O. M., 10.1007/s10958-008-0126-9, J. Math. Sci. (N.Y.) 150 (2008), 2115-2122. (2008) MR2722976DOI10.1007/s10958-008-0126-9
  4. Good, A., 10.1112/S0025579300012377, Mathematika 29 (1982), 278-295. (1982) Zbl0497.10016MR0696884DOI10.1112/S0025579300012377
  5. Ivić, A., The Riemann Zeta-Function: The Theory of the Riemann Zeta-Function with Applications, John Wiley & Sohns, New York (1985). (1985) Zbl0556.10026MR792089
  6. Ivić, A., On zeta-functions associated with Fourier coefficients of cusp forms, Proceedings of the Amalfi Conference on Analytic Number Theory Universitá di Salerno, Salermo (1992), 231-246. (1992) Zbl0787.11035MR1220467
  7. Jutila, M., Lectures on a Method in the Theory of Exponential Sums, Lectures on Mathematics and Physics. Mathematics. Tata Institute of Fundamental Research 80. Springer, Berlin (1987). (1987) Zbl0671.10031MR0910497
  8. Kim, H. H., 10.4064/aa128-3-4, Acta Arith. 128 (2007), 235-243. (2007) Zbl1135.11051MR2313992DOI10.4064/aa128-3-4
  9. Lin, Y., Nunes, R., Qi, Z., 10.1093/imrn/rnac153, Int. Math. Res. Not. 2023 (2023), 11453-11470. (2023) Zbl1541.11046MR4609788DOI10.1093/imrn/rnac153
  10. Liu, H., Li, S., Zhang, D., 10.1142/S1793042116500251, Int. J. Number Theory 12 (2016), 427-443. (2016) Zbl1335.11031MR3461440DOI10.1142/S1793042116500251
  11. Liu, H., 10.1007/s12044-021-00648-1, Proc. Indian Acad. Sci., Math. Sci. 131 (2021), Article ID 48, 10 pages. (2021) Zbl1478.11112MR4344605DOI10.1007/s12044-021-00648-1
  12. Lü, G., 10.2478/s11533-012-0133-4, Cent. Eur. J. Math. 11 (2013), 274-282. (2013) Zbl1292.11108MR3000644DOI10.2478/s11533-012-0133-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.