LΣ(≤ ω)-spaces and spaces of continuous functions

Israel Lara; Oleg Okunev

Open Mathematics (2010)

  • Volume: 8, Issue: 4, page 754-762
  • ISSN: 2391-5455

Abstract

top
We present a few results and problems related to spaces of continuous functions with the topology of pointwise convergence and the classes of LΣ(≤ ω)-spaces; in particular, we prove that every Gul’ko compact space of cardinality less or equal to 𝔠 is an LΣ(≤ ω)-space.

How to cite

top

Israel Lara, and Oleg Okunev. "LΣ(≤ ω)-spaces and spaces of continuous functions." Open Mathematics 8.4 (2010): 754-762. <http://eudml.org/doc/269123>.

@article{IsraelLara2010,
abstract = {We present a few results and problems related to spaces of continuous functions with the topology of pointwise convergence and the classes of LΣ(≤ ω)-spaces; in particular, we prove that every Gul’ko compact space of cardinality less or equal to \[ \mathfrak \{c\} \] is an LΣ(≤ ω)-space.},
author = {Israel Lara, Oleg Okunev},
journal = {Open Mathematics},
keywords = {Lindelöf Σ-spaces; Pointwise convergence; Compact-valued mappings; Gul’ko compact spaces; Lindelöf -spaces; pointwise convergence; compact-valued mappings; Gul'ko compact spaces},
language = {eng},
number = {4},
pages = {754-762},
title = {LΣ(≤ ω)-spaces and spaces of continuous functions},
url = {http://eudml.org/doc/269123},
volume = {8},
year = {2010},
}

TY - JOUR
AU - Israel Lara
AU - Oleg Okunev
TI - LΣ(≤ ω)-spaces and spaces of continuous functions
JO - Open Mathematics
PY - 2010
VL - 8
IS - 4
SP - 754
EP - 762
AB - We present a few results and problems related to spaces of continuous functions with the topology of pointwise convergence and the classes of LΣ(≤ ω)-spaces; in particular, we prove that every Gul’ko compact space of cardinality less or equal to \[ \mathfrak {c} \] is an LΣ(≤ ω)-space.
LA - eng
KW - Lindelöf Σ-spaces; Pointwise convergence; Compact-valued mappings; Gul’ko compact spaces; Lindelöf -spaces; pointwise convergence; compact-valued mappings; Gul'ko compact spaces
UR - http://eudml.org/doc/269123
ER -

References

top
  1. [1] Arhangel’skĭ A.V., Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl., 1982, 26(1), 177–181 
  2. [2] Arhangel’skĭ A.V., Topological Function Spaces, Kluwer, Dordrecht, 1992 
  3. [3] Casarrubias Segura F., Okunev O., Paniagua Ramírez C.G., Some results on LΣ(κ)-spaces, Comment. Math. Univ. Carolin., 2008, 49(4), 667–675 Zbl1212.54075
  4. [4] Engelking R., On the double circumference of Alexandroff, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 1968, 16(8), 629–634 Zbl0167.21001
  5. [5] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989 
  6. [6] Kubiś W., Okunev O., Szeptycki P.J., On some classes of Lindelöf Σ-spaces, Topology Appl., 2006, 153(14), 2574–2590 http://dx.doi.org/10.1016/j.topol.2005.09.009[WoS][Crossref] Zbl1102.54028
  7. [7] Nagami K., Σ-spaces, Fund. Math., 1969, 65, 169–192 
  8. [8] Okunev O., A method for constructing examples of M-equivalent spaces, Topology Appl. 1990, 36(2), 157–171, Correction: Topology Appl., 1993, 49(2), 191-192 http://dx.doi.org/10.1016/0166-8641(90)90006-N[Crossref] Zbl0707.54007
  9. [9] Okunev O., On Lindelöf Σ-spaces of continuous functions in the pointwise topology, Topology Appl., 1993, 49(2), 149–166 http://dx.doi.org/10.1016/0166-8641(93)90041-B[Crossref] 
  10. [10] Okunev O., Tamano K., Lindelöf powers and products of function spaces, Proc. Amer. Math. Soc., 1996, 124(9), 2905–2916 http://dx.doi.org/10.1090/S0002-9939-96-03629-5[Crossref] Zbl0858.54013
  11. [11] Simon P., On continuous image of Eberlein compacts, Comment. Math. Univ. Carolinae, 1976, 17(1), 179–194 Zbl0322.54014
  12. [12] Sokolov G.A., On some classes of compact spaces lying in Σ-products, Comment. Math. Univ. Carolinae, 1984, 25(2), 219–231 Zbl0577.54014
  13. [13] Tkachuk V.V., A glance at compact spaces which map “nicely” onto the metrizable ones, Topology Proc., 1994, 19, 321–334 Zbl0854.54022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.