Isometries of the Teichmüller metric

Marco Abate; Giorgio Patrizio

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1998)

  • Volume: 26, Issue: 3, page 437-452
  • ISSN: 0391-173X

How to cite

top

Abate, Marco, and Patrizio, Giorgio. "Isometries of the Teichmüller metric." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 26.3 (1998): 437-452. <http://eudml.org/doc/84335>.

@article{Abate1998,
author = {Abate, Marco, Patrizio, Giorgio},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Finsler metric; Teichmüller space; Teichmüller metric; isometry; complex manifold; Carathéodory metric; Kobayashi metric; Fuchsian group},
language = {eng},
number = {3},
pages = {437-452},
publisher = {Scuola normale superiore},
title = {Isometries of the Teichmüller metric},
url = {http://eudml.org/doc/84335},
volume = {26},
year = {1998},
}

TY - JOUR
AU - Abate, Marco
AU - Patrizio, Giorgio
TI - Isometries of the Teichmüller metric
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1998
PB - Scuola normale superiore
VL - 26
IS - 3
SP - 437
EP - 452
LA - eng
KW - Finsler metric; Teichmüller space; Teichmüller metric; isometry; complex manifold; Carathéodory metric; Kobayashi metric; Fuchsian group
UR - http://eudml.org/doc/84335
ER -

References

top
  1. [1] M. Abate, "Iteration Theory of Holomorphic Maps on Taut Manifolds", Mediterranean Press, Cosenza, 1989. Zbl0747.32002MR1098711
  2. [2] M. Abate - G. Patrizio, "Finsler Metrics - A Global Approach", Lecture Notes in Mathematics1591, Springer, Berlin, 1994. Zbl0837.53001MR1323428
  3. [3] S. Dineen - R. Timoney - J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12 (1985), 515-529. Zbl0603.46052MR848840
  4. [4] C.J. Earle - J. Eells, On the differential geometry of Teichmüller spaces, J. Anal. Math. 19 (1967), 35-52. Zbl0156.30604MR220923
  5. [5] C.J. Earle - I. Kra - L. Krushkal', Holomorphic motions and Teichmüller spaces, Trans. Amer. Math. Soc.343 (1994), 927-948. Zbl0812.30018MR1214783
  6. [6] F.P. Gardiner, "Teichmüller Theory and Quadratic Differentials ", Wiley, New York, 1987 Zbl0629.30002MR903027
  7. [7] I. Graham, Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point, Proc. Amer. Math. Soc.105 (1989), 917-921. Zbl0709.32016MR961406
  8. [8] L.A. Harris, Schwarz-Pick systems of pseudo metrics for domains in normed linear spaces, In: "Advances in holomorphy", North-Holland Mathematical Studies34, Amsterdam, 1979, pp. 345-406. Zbl0409.46053MR520667
  9. [9] M. Heins, On a class of conformal mappings, Nagoya Math. J.21 (1962), 1-60. Zbl0113.05603MR143901
  10. [10] S. Kobayashi, " Hyperbolic Manifolds and Holomorphic Mappings ", Dekker, New York, 1970. Zbl0207.37902MR277770
  11. [11] I. Kra, The Carathéodory metric abelian Teichmüller disks, J. Anal. Math.40 (1981), 129-143. Zbl0487.32017MR659787
  12. [12] S. Kravets, On the geometry of Teichmüller spaces and the structure of their modular groups, Ann. Acad. Sci. Fenn.278 (1959), 1-35. Zbl0168.04601MR148906
  13. [13] S.L. Krushkal, Hyperbolic metrics on finite-dimensional Teichmüller spaces, Ann. Acad. Sci. Fenn.15 (1990), 125-132. Zbl0698.30020MR1050786
  14. [14] H.A. Masur - M. Wolf, Teichmüller space is not Gromov hyperbolic, Ann. Acad. Sci. Fenn.20 (1995), 259-267. Zbl0878.32015MR1346811
  15. [15] B. O'Byrne, On Finsler geometry and applications to Teichmüller spaces, In: " Advances in the theory of Riemann surfaces ", Ann. of Math. Studies66, Princeton University Press, Princeton, 1971, pp. 317-328. Zbl0219.58002MR286141
  16. [16] G. Patrizio, On holomorphic maps between domains in C n, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 13 (1986), 267-279. Zbl0611.32022MR876125
  17. [17] H.L. Royden, Automorphisms and isometries of Teichmüller space, In: "Advances in the theory of Riemann surfaces", Ann. of Math. Studies66, Princeton University Press, Princeton, 1971, pp. 369-383. Zbl0218.32011MR288254
  18. [18] H.L. Royden, Complex Finsler metrics, In: "Contemporary Mathematics", Proceedings of Summer Research Conference, American Mathematical Society, Providence, 1984, pp. 119-124. Zbl0587.53029MR833808
  19. [19] H.L. Royden, The Ahlfors-Schwarz lemma: the case of equality, J. Anal. Math.46 (1986), 261-270. Zbl0604.30027MR861705
  20. [20] D. Shoiykhet, Some properties of Fredholm mapping in Banach analytic manifolds, Integral Equations Operator Theory16 (1993), 430-451. Zbl0789.58009MR1209309
  21. [21] M. Suzuki, The intrinsic metrics on the domains in Cn, Math. Rep. Toyama Univ6 (1983), 143-177. Zbl0522.32020MR719152
  22. [22] E. Vesentini, Complex geodesics, Comp. Math.44 (1981), 375-394. Zbl0488.30015MR662466
  23. [23] J.P. Vigué, Caractérisation des automorphismes analytiques d'un domaine convexe borné, C.R. Acad. Sci. Paris299 (1984), 101-104. Zbl0589.32042MR756530
  24. [24] J.-P. Vigué, Sur la caractérisation des automorphismes analytiques d'un domaine borné, Portugal. Math.43 (1986), 439-453. Zbl0628.32040MR911450
  25. [25] B. Wong, On the holomorphic sectional curvature of some intrinsic metrics, Proc. Amer. Math. Soc.65 (1997), 57-61. Zbl0364.32009MR454081
  26. [26] H. Wu, A remark on holomorphic sectional curvature, Indiana Univ. Math. J.22 (1973), 1103-1108. Zbl0265.53055MR315642
  27. [27] L. Zhong, Closed geodesics and non-differentiability of the metric in infinite dimensional Theichmüller spaces, Proc. Amer. Math. Soc.124 (1996), 1459-1465. Zbl0842.30015MR1301053

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.