Prime ideals in 0-distributive posets
Open Mathematics (2013)
- Volume: 11, Issue: 5, page 940-955
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Balasubramani P., Characterizations of the 0-distributive semilattice, Math. Bohem., 2003, 128(3), 237–252 Zbl1052.06002
- [2] Batueva C., Semenova M., Ideals in distributive posets, Cent. Eur. J. Math., 2011, 9(6), 1380–1388 http://dx.doi.org/10.2478/s11533-011-0075-2 Zbl1242.06002
- [3] Chajda I., Complemented ordered sets, Arch. Math. (Brno), 1992, 28(1–2), 25–34 Zbl0785.06002
- [4] David E., Erné M., Ideal completion and Stone representation of ideal-distributive ordered sets, Topology Appl., 1992, 44(1–3), 95–113 http://dx.doi.org/10.1016/0166-8641(92)90083-C Zbl0768.06003
- [5] Erné M., Verallgemeinerungen der Verbandstheorie II: m-Ideale in halbgeordneten Mengen und Hüllenräumen, Habilitationsschrift, University of Hannover, 1979
- [6] Erné M., Distributivgesetze und Dedekind’sche Schnitte, Abh. Braunschweig. Wiss. Ges., 1982, 33, 117–145 Zbl0526.06005
- [7] Erné M., Distributive laws for concept lattices, Algebra Universalis, 1993, 30(4), 538–580 http://dx.doi.org/10.1007/BF01195382 Zbl0795.06006
- [8] Erné M., Prime ideal theory for general algebras, Appl. Categ. Structures, 2000, 8(1–2), 115–144 http://dx.doi.org/10.1023/A:1008611926427
- [9] Erné M., Prime and maximal ideals of partially ordered sets, Math. Slovaca, 2006, 56(1), 1–22 Zbl1164.03011
- [10] Erné M., Wilke G., Standard completions for quasiordered sets, Semigroup Forum, 1983, 27(1–4), 351–376 http://dx.doi.org/10.1007/BF02572747 Zbl0517.06009
- [11] Frink O., Ideals in partially ordered sets, Amer. Math. Monthly, 1954, 61, 223–234 http://dx.doi.org/10.2307/2306387 Zbl0055.25901
- [12] Gorbunov V.A., Tumanov V.I., On the existence of prime ideals in semidistributive lattices, Algebra Universalis, 1983, 16, 250–252 http://dx.doi.org/10.1007/BF01191774 Zbl0516.06006
- [13] Grätzer G., General Lattice Theory, 2nd ed., Birkhäuser, Basel, 1998 Zbl0909.06002
- [14] Halaš R., Annihilators and ideals in ordered sets, Czechoslovak Math. J., 1995, 45(120)(1), 127–134 Zbl0838.06003
- [15] Halaš R., Some properties of Boolean ordered sets, Czechoslovak Math. J., 1996, 46(121)(1), 93–98 Zbl0904.06002
- [16] Halaš R., Joshi V., Kharat V.S., On n-normal posets, Cent. Eur. J. Math., 2010, 8(5), 985–991 http://dx.doi.org/10.2478/s11533-010-0062-z Zbl1234.06003
- [17] Halaš R., Rachůnek J., Polars and prime ideals in ordered sets, Discuss. Math. Algebra Stochastic Methods, 1995, 15(1), 43–59 Zbl0840.06003
- [18] Joshi V., On completion of section semicomplemented posets, Southeast Asian Bull. Math., 2007, 31(5), 881–892 Zbl1150.06001
- [19] Joshi V.V., Waphare B.N., Characterizations of 0-distributive posets, Math. Bohem., 2005, 130(1), 73–80 Zbl1112.06001
- [20] Kaplansky I., Commutative Rings, University of Chicago Press, Chicago, 1974
- [21] Kharat V.S., Mokbel K.A., Semiprime ideals and separation theorems for posets, Order, 2008, 25(3), 195–210 http://dx.doi.org/10.1007/s11083-008-9087-3 Zbl1155.06003
- [22] Kharat V.S., Mokbel K.A., Primeness and semiprimeness in posets, Math. Bohem., 2009, 134(1), 19–30 Zbl1212.06001
- [23] Larmerová J., Rachůnek J., Translations of distributive and modular ordered sets, Acta. Univ. Palack. Olomuc. Fac. Rerum. Natur. Math., 1988, 27, 13–23 Zbl0693.06003
- [24] Mokbel K.A., A study of ideals and central elements in partially ordered sets, PhD thesis, University of Pune, 2007
- [25] Nachbin L., Une proprietété caractéristique des algèbres booléiennes, Portugal. Math., 1947, 6, 115–118 Zbl0034.16603
- [26] Niederle J., Boolean and distributive ordered sets: Characterization and representation by sets, Order, 1995, 12(2), 189–210 http://dx.doi.org/10.1007/BF01108627 Zbl0838.06004
- [27] Pawar Y.S., Lokhande A.D., 0–1-distributivity and complementedness, Bull. Calcutta Math. Soc., 1998, 90(2), 147–150
- [28] Pawar Y.S., Thakare N.K., 0-distributive semilattices, Canad. Math. Bull., 1978, 21(4), 469–481 http://dx.doi.org/10.4153/CMB-1978-080-6 Zbl0413.06002
- [29] Rav Y., Semiprime ideals in general lattices, J. Pure Appl. Algebra, 1989, 56(2), 105–118 http://dx.doi.org/10.1016/0022-4049(89)90140-0
- [30] Stone M.H., The theory of representations for Boolean algebras, Trans. Amer. Math. Soc., 1936, 40(1), 37–111 Zbl0014.34002
- [31] Thakare N.K., Pawar M.M., Waphare B.N., Modular pairs, standard elements, neutral elements and related results in partially ordered sets, J. Indian Math. Soc. (N.S.), 2004, 71(1–4), 13–53 Zbl1117.06301
- [32] Thakare N.K., Pawar Y.S., Minimal prime ideals in 0-distributive semilattices, Period. Math. Hungar., 1982, 13(3), 237–246 http://dx.doi.org/10.1007/BF01847920 Zbl0532.06003
- [33] Varlet J.C., A generalization of the notion of pseudo-complementedness, Bull. Soc. Roy. Sci. Liège, 1968, 36, 149–158 Zbl0162.03501
- [34] Venkatanarasimhan P.V., Semi-ideals in posets, Math. Ann., 1970, 185(4), 338–348 http://dx.doi.org/10.1007/BF01349957 Zbl0182.33902
- [35] Venkatanarasimhan P.V., Pseudo-complements in posets, Proc. Amer. Math. Soc., 1971, 28(1), 9–17 http://dx.doi.org/10.1090/S0002-9939-1971-0272687-X Zbl0218.06002
- [36] Waphare B.N., Joshi V., Characterization of standard elements in posets, Order, 2004, 21(1), 49–60 http://dx.doi.org/10.1007/s11083-004-2862-x Zbl1060.06003
- [37] Waphare B.N., Joshi V.V., On uniquely complemented posets, Order, 2005, 22(1), 11–20 http://dx.doi.org/10.1007/s11083-005-9002-0 Zbl1091.06002
- [38] Waphare B.N., Joshi V., On distributive pairs in posets, Southeast Asian Bull. Math., 2007, 31(6), 1205–1233 Zbl1150.06006