On stable conjugacy of finite subgroups of the plane Cremona group, I
Fedor Bogomolov; Yuri Prokhorov
Open Mathematics (2013)
- Volume: 11, Issue: 12, page 2099-2105
 - ISSN: 2391-5455
 
Access Full Article
topAbstract
topHow to cite
topFedor Bogomolov, and Yuri Prokhorov. "On stable conjugacy of finite subgroups of the plane Cremona group, I." Open Mathematics 11.12 (2013): 2099-2105. <http://eudml.org/doc/269556>.
@article{FedorBogomolov2013,
	abstract = {We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.},
	author = {Fedor Bogomolov, Yuri Prokhorov},
	journal = {Open Mathematics},
	keywords = {Cremona group; Birational map; del Pezzo surface; birational map},
	language = {eng},
	number = {12},
	pages = {2099-2105},
	title = {On stable conjugacy of finite subgroups of the plane Cremona group, I},
	url = {http://eudml.org/doc/269556},
	volume = {11},
	year = {2013},
}
TY  - JOUR
AU  - Fedor Bogomolov
AU  - Yuri Prokhorov
TI  - On stable conjugacy of finite subgroups of the plane Cremona group, I
JO  - Open Mathematics
PY  - 2013
VL  - 11
IS  - 12
SP  - 2099
EP  - 2105
AB  - We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.
LA  - eng
KW  - Cremona group; Birational map; del Pezzo surface; birational map
UR  - http://eudml.org/doc/269556
ER  - 
References
top- [1] Abramovich D., Wang J., Equivariant resolution of singularities in characteristic 0, Math. Res. Lett., 1997, 4(2–3), 427–433 http://dx.doi.org/10.4310/MRL.1997.v4.n3.a11 Zbl0906.14005
 - [2] Artin M., Mumford D., Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., 1972, 25(1), 75–95 http://dx.doi.org/10.1112/plms/s3-25.1.75 Zbl0244.14017
 - [3] Bayle L., Beauville A., Birational involutions of P 2, Asian J. Math., 2000, 4(1), 11–17 Zbl1055.14012
 - [4] Beauville A., Blanc J., On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris, 2004, 339(4), 257–259 http://dx.doi.org/10.1016/j.crma.2004.06.015 Zbl1062.14017
 - [5] Beauville A., Colliot-Thélène J.-L., Sansuc J.-J., Swinnerton-Dyer P., Variétés stablement rationnelles non rationnelles, Ann. of Math., 1985, 121(2), 283–318 http://dx.doi.org/10.2307/1971174 Zbl0589.14042
 - [6] Colliot-Thélène J.-L., Sansuc J.-J., La descente sur les variétés rationnelles. II, Duke Math. J., 1987, 54(2), 375–492 http://dx.doi.org/10.1215/S0012-7094-87-05420-2 Zbl0659.14028
 - [7] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Boston, 2009, 443–548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11 Zbl1219.14015
 - [8] de Fernex T., On planar Cremona maps of prime order, Nagoya Math. J., 2004, 174, 1–28 Zbl1062.14019
 - [9] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17–39 (in Russian) http://dx.doi.org/10.1070/IM1980v014n01ABEH001064 Zbl0427.14011
 - [10] Lemire N., Popov V.L., Reichstein Z., Cayley groups, J. Amer. Math. Soc., 2006, 19(4), 921–967 http://dx.doi.org/10.1090/S0894-0347-06-00522-4
 - [11] Manin Ju.I., Rational surfaces over perfect fields, Inst. Hautes Études Sci. Publ. Math., 1966, 30, 55–97 (in Russian) http://dx.doi.org/10.1007/BF02684356
 - [12] Moret-Bailly L., Variétés stablement rationnelles non rationnelles (d’après Beauville, Colliot-Thélène, Sansuc et Swinnerton-Dyer), In: Seminar Bourbaki, 1984/85, Astérisque, 1986, 133–134, 223–236
 - [13] Popov V.L., Some subgroups of the Cremona groups, In: Affine Algebraic Geometry, Osaka, 3–6 March, 2011, World Scientific, Singapore, 2013, 213–242
 - [14] Serre J.-P., Cohomologie Galoisienne, Cours au Collège de France, 1962–1963, Lecture Notes in Math., 5, Springer, Berlin, 1962/1963
 - [15] Voskresenskiĭ V.E., Algebraic Tori, Nauka, Moscow, 1977 (in Russian)
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.