On stable conjugacy of finite subgroups of the plane Cremona group, I

Fedor Bogomolov; Yuri Prokhorov

Open Mathematics (2013)

  • Volume: 11, Issue: 12, page 2099-2105
  • ISSN: 2391-5455

Abstract

top
We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.

How to cite

top

Fedor Bogomolov, and Yuri Prokhorov. "On stable conjugacy of finite subgroups of the plane Cremona group, I." Open Mathematics 11.12 (2013): 2099-2105. <http://eudml.org/doc/269556>.

@article{FedorBogomolov2013,
abstract = {We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.},
author = {Fedor Bogomolov, Yuri Prokhorov},
journal = {Open Mathematics},
keywords = {Cremona group; Birational map; del Pezzo surface; birational map},
language = {eng},
number = {12},
pages = {2099-2105},
title = {On stable conjugacy of finite subgroups of the plane Cremona group, I},
url = {http://eudml.org/doc/269556},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Fedor Bogomolov
AU - Yuri Prokhorov
TI - On stable conjugacy of finite subgroups of the plane Cremona group, I
JO - Open Mathematics
PY - 2013
VL - 11
IS - 12
SP - 2099
EP - 2105
AB - We discuss the problem of stable conjugacy of finite subgroups of Cremona groups. We compute the stable birational invariant H 1(G, Pic(X)) for cyclic groups of prime order.
LA - eng
KW - Cremona group; Birational map; del Pezzo surface; birational map
UR - http://eudml.org/doc/269556
ER -

References

top
  1. [1] Abramovich D., Wang J., Equivariant resolution of singularities in characteristic 0, Math. Res. Lett., 1997, 4(2–3), 427–433 http://dx.doi.org/10.4310/MRL.1997.v4.n3.a11 Zbl0906.14005
  2. [2] Artin M., Mumford D., Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., 1972, 25(1), 75–95 http://dx.doi.org/10.1112/plms/s3-25.1.75 Zbl0244.14017
  3. [3] Bayle L., Beauville A., Birational involutions of P 2, Asian J. Math., 2000, 4(1), 11–17 Zbl1055.14012
  4. [4] Beauville A., Blanc J., On Cremona transformations of prime order, C. R. Math. Acad. Sci. Paris, 2004, 339(4), 257–259 http://dx.doi.org/10.1016/j.crma.2004.06.015 Zbl1062.14017
  5. [5] Beauville A., Colliot-Thélène J.-L., Sansuc J.-J., Swinnerton-Dyer P., Variétés stablement rationnelles non rationnelles, Ann. of Math., 1985, 121(2), 283–318 http://dx.doi.org/10.2307/1971174 Zbl0589.14042
  6. [6] Colliot-Thélène J.-L., Sansuc J.-J., La descente sur les variétés rationnelles. II, Duke Math. J., 1987, 54(2), 375–492 http://dx.doi.org/10.1215/S0012-7094-87-05420-2 Zbl0659.14028
  7. [7] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry: in honor of Yu.I. Manin, I, Progr. Math., 269, Birkhäuser, Boston, 2009, 443–548 http://dx.doi.org/10.1007/978-0-8176-4745-2_11 Zbl1219.14015
  8. [8] de Fernex T., On planar Cremona maps of prime order, Nagoya Math. J., 2004, 174, 1–28 Zbl1062.14019
  9. [9] Iskovskikh V.A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 1980, 14(1), 17–39 (in Russian) http://dx.doi.org/10.1070/IM1980v014n01ABEH001064 Zbl0427.14011
  10. [10] Lemire N., Popov V.L., Reichstein Z., Cayley groups, J. Amer. Math. Soc., 2006, 19(4), 921–967 http://dx.doi.org/10.1090/S0894-0347-06-00522-4 
  11. [11] Manin Ju.I., Rational surfaces over perfect fields, Inst. Hautes Études Sci. Publ. Math., 1966, 30, 55–97 (in Russian) http://dx.doi.org/10.1007/BF02684356 
  12. [12] Moret-Bailly L., Variétés stablement rationnelles non rationnelles (d’après Beauville, Colliot-Thélène, Sansuc et Swinnerton-Dyer), In: Seminar Bourbaki, 1984/85, Astérisque, 1986, 133–134, 223–236 
  13. [13] Popov V.L., Some subgroups of the Cremona groups, In: Affine Algebraic Geometry, Osaka, 3–6 March, 2011, World Scientific, Singapore, 2013, 213–242 
  14. [14] Serre J.-P., Cohomologie Galoisienne, Cours au Collège de France, 1962–1963, Lecture Notes in Math., 5, Springer, Berlin, 1962/1963 
  15. [15] Voskresenskiĭ V.E., Algebraic Tori, Nauka, Moscow, 1977 (in Russian) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.