The shadowing chain lemma for singular Hamiltonian systems involving strong forces
Marek Izydorek; Joanna Janczewska
Open Mathematics (2012)
- Volume: 10, Issue: 6, page 1928-1939
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMarek Izydorek, and Joanna Janczewska. "The shadowing chain lemma for singular Hamiltonian systems involving strong forces." Open Mathematics 10.6 (2012): 1928-1939. <http://eudml.org/doc/269571>.
@article{MarekIzydorek2012,
abstract = {We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 \{ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.
},
author = {Marek Izydorek, Joanna Janczewska},
journal = {Open Mathematics},
keywords = {Heteroclinic orbit; Homoclinic orbit; Rotation number (winding number); Shadowing chain lemma; Singular Hamiltonian systems; Strong force; heteroclinic orbit; homoclinic orbit; rotation number (winding number); shadowing chain lemma; singular Hamiltonian systems; strong force},
language = {eng},
number = {6},
pages = {1928-1939},
title = {The shadowing chain lemma for singular Hamiltonian systems involving strong forces},
url = {http://eudml.org/doc/269571},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Marek Izydorek
AU - Joanna Janczewska
TI - The shadowing chain lemma for singular Hamiltonian systems involving strong forces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 1928
EP - 1939
AB - We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.
LA - eng
KW - Heteroclinic orbit; Homoclinic orbit; Rotation number (winding number); Shadowing chain lemma; Singular Hamiltonian systems; Strong force; heteroclinic orbit; homoclinic orbit; rotation number (winding number); shadowing chain lemma; singular Hamiltonian systems; strong force
UR - http://eudml.org/doc/269571
ER -
References
top- [1] Bertotti M.L., Jeanjean L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(6), 1169–1180 http://dx.doi.org/10.1017/S0308210500023349[Crossref] Zbl0868.34001
- [2] Bolotin S., Variational criteria for nonintegrability and chaos in Hamiltonian systems, In: Hamiltonian Mechanics, Torun, 28 June–2 July, 1993, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179
- [3] Borges M.J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 2006, 17(1), 1–32 http://dx.doi.org/10.1017/S0956792506006516[Crossref] Zbl1160.37390
- [4] Caldiroli P., Jeanjean L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 1997, 136(1), 76–114 http://dx.doi.org/10.1006/jdeq.1996.3230[Crossref] Zbl0887.34044
- [5] Caldiroli P., Nolasco M., Multiple homoclinic solutions for a class of autonomous singular systems in ℝ2, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1998, 15(1), 113–125 http://dx.doi.org/10.1016/S0294-1449(99)80022-5[Crossref] Zbl0907.58014
- [6] Gordon W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 1975, 204, 113–135 http://dx.doi.org/10.1090/S0002-9947-1975-0377983-1[Crossref] Zbl0276.58005
- [7] Izydorek M., Janczewska J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2007, 238(2), 381–393 http://dx.doi.org/10.1016/j.jde.2007.03.013[Crossref] Zbl1117.37033
- [8] Janczewska J., The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltonian systems in ℝ2, Boll. Unione Mat. Ital., 2010, 3(3), 471–491 Zbl1214.37049
- [9] Rabinowitz P.H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1989, 6(5), 331–346 Zbl0701.58023
- [10] Rabinowitz P.H., Homoclinics for a singular Hamiltonian system, In: Geometric Analysis and the Calculus of Variations, International Press, Cambridge, 1996, 267–296 Zbl0936.37035
- [11] Shil’nikov L.P., Homoclinic trajectories: from Poincaré to the present, In: Mathematical Events of the Twentieth Century, Springer, Berlin, 2006, 347–370 http://dx.doi.org/10.1007/3-540-29462-7_17[Crossref]
- [12] Tanaka K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1990, 7(5), 427–438 Zbl0712.58026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.