The shadowing chain lemma for singular Hamiltonian systems involving strong forces

Marek Izydorek; Joanna Janczewska

Open Mathematics (2012)

  • Volume: 10, Issue: 6, page 1928-1939
  • ISSN: 2391-5455

Abstract

top
We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.

How to cite

top

Marek Izydorek, and Joanna Janczewska. "The shadowing chain lemma for singular Hamiltonian systems involving strong forces." Open Mathematics 10.6 (2012): 1928-1939. <http://eudml.org/doc/269571>.

@article{MarekIzydorek2012,
abstract = {We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 \{ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments. },
author = {Marek Izydorek, Joanna Janczewska},
journal = {Open Mathematics},
keywords = {Heteroclinic orbit; Homoclinic orbit; Rotation number (winding number); Shadowing chain lemma; Singular Hamiltonian systems; Strong force; heteroclinic orbit; homoclinic orbit; rotation number (winding number); shadowing chain lemma; singular Hamiltonian systems; strong force},
language = {eng},
number = {6},
pages = {1928-1939},
title = {The shadowing chain lemma for singular Hamiltonian systems involving strong forces},
url = {http://eudml.org/doc/269571},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Marek Izydorek
AU - Joanna Janczewska
TI - The shadowing chain lemma for singular Hamiltonian systems involving strong forces
JO - Open Mathematics
PY - 2012
VL - 10
IS - 6
SP - 1928
EP - 1939
AB - We consider a planar autonomous Hamiltonian system :q+∇V(q) = 0, where the potential V: ℝ2 {ζ→ ℝ has a single well of infinite depth at some point ζ and a strict global maximum 0at two distinct points a and b. Under a strong force condition around the singularity ζ we will prove a lemma on the existence and multiplicity of heteroclinic and homoclinic orbits - the shadowing chain lemma - via minimization of action integrals and using simple geometrical arguments.
LA - eng
KW - Heteroclinic orbit; Homoclinic orbit; Rotation number (winding number); Shadowing chain lemma; Singular Hamiltonian systems; Strong force; heteroclinic orbit; homoclinic orbit; rotation number (winding number); shadowing chain lemma; singular Hamiltonian systems; strong force
UR - http://eudml.org/doc/269571
ER -

References

top
  1. [1] Bertotti M.L., Jeanjean L., Multiplicity of homoclinic solutions for singular second-order conservative systems, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(6), 1169–1180 http://dx.doi.org/10.1017/S0308210500023349[Crossref] Zbl0868.34001
  2. [2] Bolotin S., Variational criteria for nonintegrability and chaos in Hamiltonian systems, In: Hamiltonian Mechanics, Torun, 28 June–2 July, 1993, NATO Adv. Sci. Inst. Ser. B Phys., 331, Plenum, New York, 1994, 173–179 
  3. [3] Borges M.J., Heteroclinic and homoclinic solutions for a singular Hamiltonian system, European J. Appl. Math., 2006, 17(1), 1–32 http://dx.doi.org/10.1017/S0956792506006516[Crossref] Zbl1160.37390
  4. [4] Caldiroli P., Jeanjean L., Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems, J. Differential Equations, 1997, 136(1), 76–114 http://dx.doi.org/10.1006/jdeq.1996.3230[Crossref] Zbl0887.34044
  5. [5] Caldiroli P., Nolasco M., Multiple homoclinic solutions for a class of autonomous singular systems in ℝ2, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1998, 15(1), 113–125 http://dx.doi.org/10.1016/S0294-1449(99)80022-5[Crossref] Zbl0907.58014
  6. [6] Gordon W.B., Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc., 1975, 204, 113–135 http://dx.doi.org/10.1090/S0002-9947-1975-0377983-1[Crossref] Zbl0276.58005
  7. [7] Izydorek M., Janczewska J., Heteroclinic solutions for a class of the second order Hamiltonian systems, J. Differential Equations, 2007, 238(2), 381–393 http://dx.doi.org/10.1016/j.jde.2007.03.013[Crossref] Zbl1117.37033
  8. [8] Janczewska J., The existence and multiplicity of heteroclinic and homoclinic orbits for a class of singular Hamiltonian systems in ℝ2, Boll. Unione Mat. Ital., 2010, 3(3), 471–491 Zbl1214.37049
  9. [9] Rabinowitz P.H., Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1989, 6(5), 331–346 Zbl0701.58023
  10. [10] Rabinowitz P.H., Homoclinics for a singular Hamiltonian system, In: Geometric Analysis and the Calculus of Variations, International Press, Cambridge, 1996, 267–296 Zbl0936.37035
  11. [11] Shil’nikov L.P., Homoclinic trajectories: from Poincaré to the present, In: Mathematical Events of the Twentieth Century, Springer, Berlin, 2006, 347–370 http://dx.doi.org/10.1007/3-540-29462-7_17[Crossref] 
  12. [12] Tanaka K., Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H.Poincaré Anal. Non Linéaire, 1990, 7(5), 427–438 Zbl0712.58026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.