Ordinary reduction of K3 surfaces
Open Mathematics (2009)
- Volume: 7, Issue: 2, page 206-213
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topFedor Bogomolov, and Yuri Zarhin. "Ordinary reduction of K3 surfaces." Open Mathematics 7.2 (2009): 206-213. <http://eudml.org/doc/269618>.
@article{FedorBogomolov2009,
abstract = {Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.},
author = {Fedor Bogomolov, Yuri Zarhin},
journal = {Open Mathematics},
keywords = {K3 surfaces; Ordinary reduction; ℓ-adic representations; Newton polygons; ordinary reduction; -adic representations},
language = {eng},
number = {2},
pages = {206-213},
title = {Ordinary reduction of K3 surfaces},
url = {http://eudml.org/doc/269618},
volume = {7},
year = {2009},
}
TY - JOUR
AU - Fedor Bogomolov
AU - Yuri Zarhin
TI - Ordinary reduction of K3 surfaces
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 206
EP - 213
AB - Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.
LA - eng
KW - K3 surfaces; Ordinary reduction; ℓ-adic representations; Newton polygons; ordinary reduction; -adic representations
UR - http://eudml.org/doc/269618
ER -
References
top- [1] Artin M., Supersingular K3 surfaces, Ann. Sci. École Norm. Sup., Sér. 4, 1974, 7, 543–567 Zbl0322.14014
- [2] Artin M., Mazur B., Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup., Sér. 4, 1977, 10, 87–131 Zbl0351.14023
- [3] Berthelot P., Ogus A., Notes on crystalline cohomology, Princeton University Press, Princeton, 1978 Zbl0383.14010
- [4] Bogomolov F.A., Sur l’algébricité des représentations ℓ-adiques, C. R. Acad. Sci. Paris Sér. A-B, 1980, 290, A701–A703 (in French) Zbl0457.14020
- [5] Bogomolov F.A., Points of finite order on abelian varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 44, 782–804 (in Russian), Math. USSR Izv., 1981, 17, 55–72 Zbl0453.14018
- [6] Deligne P., La conjecture de Weil pour les surfaces K3, Invent. Math., 1972, 15, 206–226 (in French) http://dx.doi.org/10.1007/BF01404126[Crossref] Zbl0219.14022
- [7] Deligne P. (rédigé par L. Illusie), Relèvement des surfaces K3 en charactéristique nulle, In: Surfaces Algébriques, Lecture Notes in Math., Springer, 1981, 868, 58–79 (in French)
- [8] Faltings G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 1983, 73, 349–366, Erratum, 1984, 75, 381 (in German) http://dx.doi.org/10.1007/BF01388432[Crossref]
- [9] Hindry M., Silverman J.H., Diophantine geometry, An Introduction, Graduate Texts in Mathematics 201, Springer-Verlag, New York, 2000 Zbl0948.11023
- [10] Joshi K., Rajan C.S., Frobenius splitting and ordinarity, Int. Math. Res. Not., 2003, 2, 109–121 http://dx.doi.org/10.1155/S1073792803112135[Crossref] Zbl1074.14019
- [11] Katz N., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math., 1970, 39, 175–232 http://dx.doi.org/10.1007/BF02684688[Crossref] Zbl0221.14007
- [12] Katz N., Messing W., Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 1974, 23, 73–77 http://dx.doi.org/10.1007/BF01405203[Crossref] Zbl0275.14011
- [13] Koch H., Number theory II (Algebraic number theory), Encyclopedia of Mathematical Sciences 62, Springer Verlag, Berlin Heidelberg, 1992
- [14] Mazur B., Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 1972, 78, 653–667 http://dx.doi.org/10.1090/S0002-9904-1972-12976-8[Crossref] Zbl0258.14006
- [15] Mumford D., Abelian varieties, Second Edition, Oxford University Press, London, 1974
- [16] Noot R., Abelian varieties-Galois representation and properties of ordinary reduction, Compositio Math., 1995, 97, 161–171 Zbl0868.14021
- [17] Noot R., Abelian varieties with ℓ-adic Galois representation of Mumford’s type, J. Reine Angew. Math., 2000, 519, 155–169 Zbl1042.14014
- [18] Nygaard N., The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math., 1983, 74, 213–237 http://dx.doi.org/10.1007/BF01394314[WoS][Crossref] Zbl0557.14002
- [19] Nygaard N., Ogus A., Tate’s conjecture for K3 surfaces of finite height, Ann. of Math., 1985, 122, 461–507 http://dx.doi.org/10.2307/1971327[Crossref] Zbl0591.14005
- [20] Ogus A., Hodge cycles and crystalline cohomology, In: Lecture Notes in Math., Springer, 1982, 900, 357–414 http://dx.doi.org/10.1007/978-3-540-38955-2_8[Crossref]
- [21] Piatetski-Shapiro I. I., Shafarevich I.R., Arithmetic of K3 surfaces, Trudy Mat. Inst. Steklov, 1973, 132, 44–54 (in Russian), Proc. Steklov. Math. Inst., 1975, 132, 45–57 Zbl0293.14010
- [22] Serre J.-P., Représentations ℓ-adiques, In: Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177–193, Japan Soc. Promotion Sci., Tokyo, 1977 (in French)
- [23] Serre J.-P., Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 1981, 54, 323–401 (in French) http://dx.doi.org/10.1007/BF02698692[Crossref]
- [24] Serre J.-P., Abelian ℓ-adic representations and elliptic curves, Second Edition, Addison-Wesley, 1989
- [25] Skorobogatov A.N., Zarhin Yu.G., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geom., 2008, 17, 481–502 [Crossref] Zbl1157.14008
- [26] Tankeev S.G., On the weights of the ℓ-adic representation and arithmetic of Frobenius eigenvalues, Izv. Ross. Akad. Nauk Ser. Mat., 1999, 63, 185–224 (in Russian), Izv. Math., 1999, 63, 181–218
- [27] Tate J., Conjectures on algebraic cycles in ℓ-adic cohomology, Motives (Seattle, WA, 1991), 71–83, Proc. Sympos. Pure Math. 55,Part 1, Amer. Math. Soc., Providence, RI, 1994
- [28] Yu J.-D., Yui N., K3 Surfaces of finite height over finite fields, J. Math. Kyoto Univ., 2008, 48, 499–519 Zbl1174.14034
- [29] Zarhin Yu.G., Hodge groups of K3 surfaces, J. Reine Angew. Math., 1983, 341, 193–220
- [30] Zarhin Yu.G., Weights of simple Lie algebras in the cohomology of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48, 264–304 (in Russian), Math. USSR Izv., 1985, 24, 245–282
- [31] Zarhin Yu.G., Transcendental cycles on ordinary K3 surfaces over finite fields, Duke Math. J., 1993, 72, 65–83 http://dx.doi.org/10.1215/S0012-7094-93-07203-1[Crossref] Zbl0819.14005
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.