Ordinary reduction of K3 surfaces

Fedor Bogomolov; Yuri Zarhin

Open Mathematics (2009)

  • Volume: 7, Issue: 2, page 206-213
  • ISSN: 2391-5455

Abstract

top
Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.

How to cite

top

Fedor Bogomolov, and Yuri Zarhin. "Ordinary reduction of K3 surfaces." Open Mathematics 7.2 (2009): 206-213. <http://eudml.org/doc/269618>.

@article{FedorBogomolov2009,
abstract = {Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.},
author = {Fedor Bogomolov, Yuri Zarhin},
journal = {Open Mathematics},
keywords = {K3 surfaces; Ordinary reduction; ℓ-adic representations; Newton polygons; ordinary reduction; -adic representations},
language = {eng},
number = {2},
pages = {206-213},
title = {Ordinary reduction of K3 surfaces},
url = {http://eudml.org/doc/269618},
volume = {7},
year = {2009},
}

TY - JOUR
AU - Fedor Bogomolov
AU - Yuri Zarhin
TI - Ordinary reduction of K3 surfaces
JO - Open Mathematics
PY - 2009
VL - 7
IS - 2
SP - 206
EP - 213
AB - Let X be a K3 surface over a number field K. We prove that there exists a finite algebraic field extension E/K such that X has ordinary reduction at every non-archimedean place of E outside a density zero set of places.
LA - eng
KW - K3 surfaces; Ordinary reduction; ℓ-adic representations; Newton polygons; ordinary reduction; -adic representations
UR - http://eudml.org/doc/269618
ER -

References

top
  1. [1] Artin M., Supersingular K3 surfaces, Ann. Sci. École Norm. Sup., Sér. 4, 1974, 7, 543–567 Zbl0322.14014
  2. [2] Artin M., Mazur B., Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup., Sér. 4, 1977, 10, 87–131 Zbl0351.14023
  3. [3] Berthelot P., Ogus A., Notes on crystalline cohomology, Princeton University Press, Princeton, 1978 Zbl0383.14010
  4. [4] Bogomolov F.A., Sur l’algébricité des représentations ℓ-adiques, C. R. Acad. Sci. Paris Sér. A-B, 1980, 290, A701–A703 (in French) Zbl0457.14020
  5. [5] Bogomolov F.A., Points of finite order on abelian varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 44, 782–804 (in Russian), Math. USSR Izv., 1981, 17, 55–72 Zbl0453.14018
  6. [6] Deligne P., La conjecture de Weil pour les surfaces K3, Invent. Math., 1972, 15, 206–226 (in French) http://dx.doi.org/10.1007/BF01404126[Crossref] Zbl0219.14022
  7. [7] Deligne P. (rédigé par L. Illusie), Relèvement des surfaces K3 en charactéristique nulle, In: Surfaces Algébriques, Lecture Notes in Math., Springer, 1981, 868, 58–79 (in French) 
  8. [8] Faltings G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., 1983, 73, 349–366, Erratum, 1984, 75, 381 (in German) http://dx.doi.org/10.1007/BF01388432[Crossref] 
  9. [9] Hindry M., Silverman J.H., Diophantine geometry, An Introduction, Graduate Texts in Mathematics 201, Springer-Verlag, New York, 2000 Zbl0948.11023
  10. [10] Joshi K., Rajan C.S., Frobenius splitting and ordinarity, Int. Math. Res. Not., 2003, 2, 109–121 http://dx.doi.org/10.1155/S1073792803112135[Crossref] Zbl1074.14019
  11. [11] Katz N., Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math., 1970, 39, 175–232 http://dx.doi.org/10.1007/BF02684688[Crossref] Zbl0221.14007
  12. [12] Katz N., Messing W., Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math., 1974, 23, 73–77 http://dx.doi.org/10.1007/BF01405203[Crossref] Zbl0275.14011
  13. [13] Koch H., Number theory II (Algebraic number theory), Encyclopedia of Mathematical Sciences 62, Springer Verlag, Berlin Heidelberg, 1992 
  14. [14] Mazur B., Frobenius and the Hodge filtration, Bull. Amer. Math. Soc., 1972, 78, 653–667 http://dx.doi.org/10.1090/S0002-9904-1972-12976-8[Crossref] Zbl0258.14006
  15. [15] Mumford D., Abelian varieties, Second Edition, Oxford University Press, London, 1974 
  16. [16] Noot R., Abelian varieties-Galois representation and properties of ordinary reduction, Compositio Math., 1995, 97, 161–171 Zbl0868.14021
  17. [17] Noot R., Abelian varieties with ℓ-adic Galois representation of Mumford’s type, J. Reine Angew. Math., 2000, 519, 155–169 Zbl1042.14014
  18. [18] Nygaard N., The Tate conjecture for ordinary K3 surfaces over finite fields, Invent. Math., 1983, 74, 213–237 http://dx.doi.org/10.1007/BF01394314[WoS][Crossref] Zbl0557.14002
  19. [19] Nygaard N., Ogus A., Tate’s conjecture for K3 surfaces of finite height, Ann. of Math., 1985, 122, 461–507 http://dx.doi.org/10.2307/1971327[Crossref] Zbl0591.14005
  20. [20] Ogus A., Hodge cycles and crystalline cohomology, In: Lecture Notes in Math., Springer, 1982, 900, 357–414 http://dx.doi.org/10.1007/978-3-540-38955-2_8[Crossref] 
  21. [21] Piatetski-Shapiro I. I., Shafarevich I.R., Arithmetic of K3 surfaces, Trudy Mat. Inst. Steklov, 1973, 132, 44–54 (in Russian), Proc. Steklov. Math. Inst., 1975, 132, 45–57 Zbl0293.14010
  22. [22] Serre J.-P., Représentations ℓ-adiques, In: Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177–193, Japan Soc. Promotion Sci., Tokyo, 1977 (in French) 
  23. [23] Serre J.-P., Quelques applications du théorème de densité de Chebotarev, Inst. Hautes Études Sci. Publ. Math., 1981, 54, 323–401 (in French) http://dx.doi.org/10.1007/BF02698692[Crossref] 
  24. [24] Serre J.-P., Abelian ℓ-adic representations and elliptic curves, Second Edition, Addison-Wesley, 1989 
  25. [25] Skorobogatov A.N., Zarhin Yu.G., A finiteness theorem for the Brauer group of abelian varieties and K3 surfaces, J. Algebraic Geom., 2008, 17, 481–502 [Crossref] Zbl1157.14008
  26. [26] Tankeev S.G., On the weights of the ℓ-adic representation and arithmetic of Frobenius eigenvalues, Izv. Ross. Akad. Nauk Ser. Mat., 1999, 63, 185–224 (in Russian), Izv. Math., 1999, 63, 181–218 
  27. [27] Tate J., Conjectures on algebraic cycles in ℓ-adic cohomology, Motives (Seattle, WA, 1991), 71–83, Proc. Sympos. Pure Math. 55,Part 1, Amer. Math. Soc., Providence, RI, 1994 
  28. [28] Yu J.-D., Yui N., K3 Surfaces of finite height over finite fields, J. Math. Kyoto Univ., 2008, 48, 499–519 Zbl1174.14034
  29. [29] Zarhin Yu.G., Hodge groups of K3 surfaces, J. Reine Angew. Math., 1983, 341, 193–220 
  30. [30] Zarhin Yu.G., Weights of simple Lie algebras in the cohomology of algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat., 1984, 48, 264–304 (in Russian), Math. USSR Izv., 1985, 24, 245–282 
  31. [31] Zarhin Yu.G., Transcendental cycles on ordinary K3 surfaces over finite fields, Duke Math. J., 1993, 72, 65–83 http://dx.doi.org/10.1215/S0012-7094-93-07203-1[Crossref] Zbl0819.14005

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.