Weakly-exceptional quotient singularities
Open Mathematics (2012)
- Volume: 10, Issue: 3, page 885-902
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topDmitrijs Sakovics. "Weakly-exceptional quotient singularities." Open Mathematics 10.3 (2012): 885-902. <http://eudml.org/doc/269805>.
@article{DmitrijsSakovics2012,
abstract = {A singularity is said to be weakly-exceptional if it has a unique purely log terminal blow-up. In dimension 2, V. Shokurov proved that weakly-exceptional quotient singularities are exactly those of types D n, E 6, E 7, E 8. This paper classifies the weakly-exceptional quotient singularities in dimensions 3 and 4.},
author = {Dmitrijs Sakovics},
journal = {Open Mathematics},
keywords = {Quotient singularities; Weakly-exceptional singularities; Log canonical threshold; exceptional singularities; weakly exceptional singularities; log canonical; log terminal; plt; quotient singularities},
language = {eng},
number = {3},
pages = {885-902},
title = {Weakly-exceptional quotient singularities},
url = {http://eudml.org/doc/269805},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Dmitrijs Sakovics
TI - Weakly-exceptional quotient singularities
JO - Open Mathematics
PY - 2012
VL - 10
IS - 3
SP - 885
EP - 902
AB - A singularity is said to be weakly-exceptional if it has a unique purely log terminal blow-up. In dimension 2, V. Shokurov proved that weakly-exceptional quotient singularities are exactly those of types D n, E 6, E 7, E 8. This paper classifies the weakly-exceptional quotient singularities in dimensions 3 and 4.
LA - eng
KW - Quotient singularities; Weakly-exceptional singularities; Log canonical threshold; exceptional singularities; weakly exceptional singularities; log canonical; log terminal; plt; quotient singularities
UR - http://eudml.org/doc/269805
ER -
References
top- [1] Birkar C., Cascini P., Hacon C.D., McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 2010, 23(2), 405–468 http://dx.doi.org/10.1090/S0894-0347-09-00649-3 Zbl1210.14019
- [2] Blichfeldt H., Finite Collineation Groups, The University of Chicago Science Series, University of Chicago Press, Chicago, 1917
- [3] Bruce J.W., Wall C.T.C., On the classification of cubic surfaces. J. London Math. Soc., 1979, 19(2), 245–256 http://dx.doi.org/10.1112/jlms/s2-19.2.245 Zbl0393.14007
- [4] Cheltsov I., Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal., 2008, 18(4), 1118–1144 http://dx.doi.org/10.1007/s00039-008-0687-2 Zbl1161.14030
- [5] Chel’tsov I., Shramov C., Log canonical thresholds of smooth Fano threefolds, Russian Math. Surveys, 2008, 63(5), 859–958 http://dx.doi.org/10.1070/RM2008v063n05ABEH004561 Zbl1167.14024
- [6] Cheltsov I., Shramov C., On exceptional quotient singularities, Geom. Topol., 2011, 15(4), 1843–1882 http://dx.doi.org/10.2140/gt.2011.15.1843 Zbl1232.14001
- [7] Cheltsov I., Shramov C., Six-dimensional exceptional quotient singularities, preprint avaialble at http://arxiv.org/pdf/1001.3863.pdf Zbl1281.14004
- [8] Demailly J.-P., On Tian’s invariant and log canonical thresholds, Appendix to: Chel’tsov I., Shramov C., Log canonical thresholds of smooth Fano threefolds, Russian Math. Surveys, 2008, 63(5), 859–958 http://dx.doi.org/10.1070/RM2008v063n05ABEH004561
- [9] Dolgachev I.V., Iskovskikh V.A., Finite subgroups of the plane Cremona group, In: Algebra, Arithmetic, and Geometry. I, Progr. Math., 269, Birkhäuser, Boston, 443–548 Zbl1219.14015
- [10] Flannery D.L., The finite irreducible monomial linear groups of degree 4, J. Algebra, 1999, 218(2), 436–469 http://dx.doi.org/10.1006/jabr.1999.7883 Zbl0939.20050
- [11] Frobenius F.G., Über den von L. Bieberbach gefundenen Beweis eines Satzes von C. Jordan, Königlich Preussischen Akademie der Wissenschaften zu Berlin, 1911, 241–248 Zbl42.0152.01
- [12] Höfling B., Finite irreducible imprimitive nonmonomial complex linear groups of degree 4, J. Algebra, 2001, 236(2), 419–470 http://dx.doi.org/10.1006/jabr.2000.8525 Zbl1079.20501
- [13] Hosoh T., Automorphism groups of cubic surfaces, J. Algebra, 1997, 192(2), 651–677 http://dx.doi.org/10.1006/jabr.1996.6968
- [14] Iskovskikh V.A., Prokhorov Y.G., Fano Varieties, In: Algebraic Geometry, 5, Encyclopaedia Math. Sci., 47, Springer, Berlin, 1999
- [15] Kollár J., Singularities of pairs, In: Algebraic Geometry, Santa Cruz, July 9–29, 1995, Proc. Sympos. Pure Math., 62(1), American Mathematical Society, Providence, 1997, 221–287 Zbl0905.14002
- [16] Kudryavtsev S.A., Pure log terminal blow-ups, Math. Notes, 2001, 69(5–6), 814–819 http://dx.doi.org/10.1023/A:1010234532502 Zbl1015.14007
- [17] Markushevich D., Prokhorov Yu.G., Exceptional quotient singularities, Amer. J. Math., 1999, 121(6), 1179–1189 http://dx.doi.org/10.1353/ajm.1999.0044 Zbl0958.14003
- [18] Miller G.A., Blichfeldt H.F., Dickson L.E., Theory and Applications of Finite Groups, Dover, New York, 1961 Zbl0098.25103
- [19] Prokhorov Yu.G., Blow-ups of canonical singularities, In: Proceedings of the International Algebraic Conference held on the occasion of the 90th birthday of A.G.Kurosh, Moscow, May 25–30, 1998, Walter de Gruyter, Berlin, 2000, 301–317
- [20] Prokhorov Yu.G., Sparseness of exceptional quotient singularities, Math. Notes, 2000, 68(5–6), 664–667 http://dx.doi.org/10.1023/A:1026636027672 Zbl1060.14521
- [21] Segre B., The Non-Singular Cubic Surfaces, Oxford University Press, Oxford, 1942 Zbl68.0358.01
- [22] Shokurov V.V., 3-fold log flips, Russian Acad. Sci. Izv. Math., 1993, 40(1), 95–202 http://dx.doi.org/10.1070/IM1993v040n01ABEH001862 Zbl0785.14023
- [23] Springer T.A., Invariant Theory, Lecture Notes in Math., 585, Springer, Berlin-New York, 1977
- [24] Tian G., On Kähler-Einstein metrics on certain Kähler manifolds with C 1(M) > 0, Invent. Math., 1987, 89(2), 225–246 http://dx.doi.org/10.1007/BF01389077 Zbl0599.53046
- [25] Tian G., Yau S.-T., Kähler-Einstein metrics on complex surfaces with C 1 > 0, Comm. Math. Phys., 1987, 112(1), 175–203 http://dx.doi.org/10.1007/BF01217685 Zbl0631.53052
- [26] Yau S.S.-T., Yu Y., Gorenstein Quotient Singularities in Dimension Three, Mem. Amer. Math. Soc., 505, American Mathematical Society, Providence, 1993 Zbl0799.14001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.