Applications of approximate gradient schemes for nonlinear parabolic equations

Robert Eymard; Angela Handlovičová; Raphaèle Herbin; Karol Mikula; Olga Stašová

Applications of Mathematics (2015)

  • Volume: 60, Issue: 2, page 135-156
  • ISSN: 0862-7940

Abstract

top
We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion equations.

How to cite

top

Eymard, Robert, et al. "Applications of approximate gradient schemes for nonlinear parabolic equations." Applications of Mathematics 60.2 (2015): 135-156. <http://eudml.org/doc/269878>.

@article{Eymard2015,
abstract = {We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion equations.},
author = {Eymard, Robert, Handlovičová, Angela, Herbin, Raphaèle, Mikula, Karol, Stašová, Olga},
journal = {Applications of Mathematics},
keywords = {regularized Perona-Malik equation; gradient schemes; nonlinear parabolic equations; Perona-Malik equation; gradient schemes; nonlinear tensor-diffusion equations; convergence; numerical tests},
language = {eng},
number = {2},
pages = {135-156},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Applications of approximate gradient schemes for nonlinear parabolic equations},
url = {http://eudml.org/doc/269878},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Eymard, Robert
AU - Handlovičová, Angela
AU - Herbin, Raphaèle
AU - Mikula, Karol
AU - Stašová, Olga
TI - Applications of approximate gradient schemes for nonlinear parabolic equations
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 2
SP - 135
EP - 156
AB - We develop gradient schemes for the approximation of the Perona-Malik equations and nonlinear tensor-diffusion equations. We prove the convergence of these methods to the weak solutions of the corresponding nonlinear PDEs. A particular gradient scheme on rectangular meshes is then studied numerically with respect to experimental order of convergence which shows its second order accuracy. We present also numerical experiments related to image filtering by time-delayed Perona-Malik and tensor diffusion equations.
LA - eng
KW - regularized Perona-Malik equation; gradient schemes; nonlinear parabolic equations; Perona-Malik equation; gradient schemes; nonlinear tensor-diffusion equations; convergence; numerical tests
UR - http://eudml.org/doc/269878
ER -

References

top
  1. Aavatsmark, I., Barkve, T., Bøe, Ø., Mannseth, T., 10.1006/jcph.1996.0154, J. Comput. Phys. 127 (1996), 2-14. (1996) Zbl0859.76048DOI10.1006/jcph.1996.0154
  2. Amann, H., Time-delayed Perona-{M}alik type problems, Acta Math. Univ. Comen., New Ser. 76 (2007), 15-38. (2007) Zbl1132.68067MR2331050
  3. Bartels, S., Prohl, A., Stable discretization of scalar and constrained vectorial Perona-{M}alik equation, Interfaces Free Bound. 9 (2007), 431-453. (2007) Zbl1147.35011MR2358212
  4. Bellettini, G., Novaga, M., Paolini, M., Tornese, C., 10.1016/j.jde.2008.05.003, J. Differ. Equations 245 (2008), 892-924. (2008) Zbl1155.35002MR2427400DOI10.1016/j.jde.2008.05.003
  5. Cancès, C., Gallouët, T., 10.1007/s00028-010-0080-0, J. Evol. Equ. 11 (2011), 43-55. (2011) Zbl1232.35029MR2780572DOI10.1007/s00028-010-0080-0
  6. Catté, F., Lions, P.-L., Morel, J.-M., Coll, T., 10.1137/0729012, SIAM J. Numer. Anal. 29 (1992), 182-193. (1992) Zbl0746.65091MR1149092DOI10.1137/0729012
  7. Čunderlík, R., Mikula, K., Tunega, M., 10.1007/s00190-012-0587-y, J. Geod. 87 (2013), 143-160. (2013) DOI10.1007/s00190-012-0587-y
  8. Drblíková, O., Handlovičová, A., Mikula, K., 10.1016/j.apnum.2009.05.010, Appl. Numer. Math. 59 (2009), 2548-2570. (2009) Zbl1172.65052MR2553154DOI10.1016/j.apnum.2009.05.010
  9. Drblíková, O., Mikula, K., 10.1137/070685038, SIAM J. Numer. Anal. 46 (2007), 37-60. (2007) MR2377254DOI10.1137/070685038
  10. Droniou, J., Eymard, R., Gallouët, T., Herbin, R., 10.1142/S0218202510004222, Math. Models Methods Appl. Sci. 20 (2010), 265-295. (2010) Zbl1191.65142MR2649153DOI10.1142/S0218202510004222
  11. Eymard, R., Gallouët, T., Herbin, R., Finite volume methods, P. G. Ciarlet et al. Handbook of numerical analysis. Vol. 7: Solution of equations in (Part 3) Techniques of scientific computing (Part 3) North Holland/Elsevier, Amsterdam (2000), 713-1020. (2000) Zbl0981.65095MR1804748
  12. Eymard, R., Gallouët, T., Herbin, R., 10.1093/imanum/drn084, IMA J. Numer. Anal. 30 (2010), 1009-1043. (2010) Zbl1202.65144MR2727814DOI10.1093/imanum/drn084
  13. Eymard, R., Guichard, C., Herbin, R., 10.1051/m2an/2011040, ESAIM, Math. Model. Numer. Anal. 46 (2012), 265-290. (2012) Zbl1271.76324MR2855643DOI10.1051/m2an/2011040
  14. Eymard, R., Herbin, R., Gradient scheme approximations for diffusion problems, J. Fořt et al. Finite Volumes for Complex Applications 6: Problems and Perspectives. Vol. 1, 2. Conf. Proc. Proceedings in Mathematics 4 Springer, Heidelberg (2011), 439-447. (2011) Zbl1246.65205MR2882320
  15. Eymard, R., Herbin, R., Latché, J. C., 10.1137/040613081, SIAM J. Numer. Anal. 45 (2007), 1-36. (2007) Zbl1173.76028MR2285842DOI10.1137/040613081
  16. Eymard, R., Mercier, S., Prignet, A., 10.1016/j.cam.2007.10.053, J. Comput. Appl. Math. 222 (2008), 293-323. (2008) Zbl1158.65008MR2474631DOI10.1016/j.cam.2007.10.053
  17. Handlovičová, A., Krivá, Z., Error estimates for finite volume scheme for Perona-{M}alik equation, Acta Math. Univ. Comen., New Ser. 74 (2005), 79-94. (2005) Zbl1108.35083MR2154399
  18. Handlovičová, A., Mikula, K., Sgallari, F., 10.1007/s002110100374, Numer. Math. 93 (2003), 675-695. (2003) Zbl1065.65105MR1961884DOI10.1007/s002110100374
  19. Mikula, K., Ramarosy, N., 10.1007/PL00005479, Numer. Math. 89 (2001), 561-590. (2001) Zbl1013.65094MR1864431DOI10.1007/PL00005479
  20. Perona, P., Malik, J., 10.1109/34.56205, IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), 629-639. (1990) DOI10.1109/34.56205
  21. Weickert, J., 10.1023/A:1008009714131, Int. J. Comput. Vis. 31 (1999), 111-127. (1999) DOI10.1023/A:1008009714131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.