On isometrical extension properties of function spaces
Commentationes Mathematicae Universitatis Carolinae (2015)
- Volume: 56, Issue: 1, page 105-115
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKato, Hisao. "On isometrical extension properties of function spaces." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 105-115. <http://eudml.org/doc/269887>.
@article{Kato2015,
abstract = {In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta )$, where $Q$ and $\Delta $ denote the Hilbert cube $[0,1]^\{\infty \}$ and a Cantor set, respectively.},
author = {Kato, Hisao},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear extension of isometry; theorem of Banach and Mazur; Hilbert cube; Cantor set; separable metric space; surjective isometry; isometric embedding; function space; linear extension of isometry; Hilbert cube; Cantor set},
language = {eng},
number = {1},
pages = {105-115},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On isometrical extension properties of function spaces},
url = {http://eudml.org/doc/269887},
volume = {56},
year = {2015},
}
TY - JOUR
AU - Kato, Hisao
TI - On isometrical extension properties of function spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 105
EP - 115
AB - In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta )$, where $Q$ and $\Delta $ denote the Hilbert cube $[0,1]^{\infty }$ and a Cantor set, respectively.
LA - eng
KW - linear extension of isometry; theorem of Banach and Mazur; Hilbert cube; Cantor set; separable metric space; surjective isometry; isometric embedding; function space; linear extension of isometry; Hilbert cube; Cantor set
UR - http://eudml.org/doc/269887
ER -
References
top- Banach S., Théories des Opérations Linéaires, Hafner, New York, 1932, p. 185.
- Ikegami Y., Kato H., Ueda A., 10.1016/j.topol.2013.01.010, Topology Appl. 160 (2013), 564–574. Zbl1295.54036MR3010364DOI10.1016/j.topol.2013.01.010
- Mazur S., Ulam S., Sur les transformation isométriques d'espace vectoriel normés, C.R. Acad. Sci. Paris 194 (1932), 946–948.
- van Mill J., Infinite-dimensional Topology: Prerequisites and Introduction, North-Holland, Amsterdam, 1989. Zbl0663.57001MR0977744
- Sierpiński W., Sur un espace métrique séparable universel, Fund. Math. 33 (1945), 115–122. Zbl0061.40001MR0015451
- Stone M.H., 10.1090/S0002-9947-1937-1501905-7, Trans. Amer. Math. Soc. 41 (1937), 375–381. Zbl0017.13502MR1501905DOI10.1090/S0002-9947-1937-1501905-7
- Urysohn P., Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43–64.
- Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), 181–182. Zbl0699.54011MR1056185
- Uspenskij V.V., A universal topological group with a countable base, Funct. Anal. Appl. 20 (1986), 86–87. MR0847156
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.