On isometrical extension properties of function spaces

Hisao Kato

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 1, page 105-115
  • ISSN: 0010-2628

Abstract

top
In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces C ( Q ) and C ( Δ ) , where Q and Δ denote the Hilbert cube [ 0 , 1 ] and a Cantor set, respectively.

How to cite

top

Kato, Hisao. "On isometrical extension properties of function spaces." Commentationes Mathematicae Universitatis Carolinae 56.1 (2015): 105-115. <http://eudml.org/doc/269887>.

@article{Kato2015,
abstract = {In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta )$, where $Q$ and $\Delta $ denote the Hilbert cube $[0,1]^\{\infty \}$ and a Cantor set, respectively.},
author = {Kato, Hisao},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {linear extension of isometry; theorem of Banach and Mazur; Hilbert cube; Cantor set; separable metric space; surjective isometry; isometric embedding; function space; linear extension of isometry; Hilbert cube; Cantor set},
language = {eng},
number = {1},
pages = {105-115},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On isometrical extension properties of function spaces},
url = {http://eudml.org/doc/269887},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Kato, Hisao
TI - On isometrical extension properties of function spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 1
SP - 105
EP - 115
AB - In this note, we prove that any “bounded” isometries of separable metric spaces can be represented as restrictions of linear isometries of function spaces $C(Q)$ and $C(\Delta )$, where $Q$ and $\Delta $ denote the Hilbert cube $[0,1]^{\infty }$ and a Cantor set, respectively.
LA - eng
KW - linear extension of isometry; theorem of Banach and Mazur; Hilbert cube; Cantor set; separable metric space; surjective isometry; isometric embedding; function space; linear extension of isometry; Hilbert cube; Cantor set
UR - http://eudml.org/doc/269887
ER -

References

top
  1. Banach S., Théories des Opérations Linéaires, Hafner, New York, 1932, p. 185. 
  2. Ikegami Y., Kato H., Ueda A., 10.1016/j.topol.2013.01.010, Topology Appl. 160 (2013), 564–574. Zbl1295.54036MR3010364DOI10.1016/j.topol.2013.01.010
  3. Mazur S., Ulam S., Sur les transformation isométriques d'espace vectoriel normés, C.R. Acad. Sci. Paris 194 (1932), 946–948. 
  4. van Mill J., Infinite-dimensional Topology: Prerequisites and Introduction, North-Holland, Amsterdam, 1989. Zbl0663.57001MR0977744
  5. Sierpiński W., Sur un espace métrique séparable universel, Fund. Math. 33 (1945), 115–122. Zbl0061.40001MR0015451
  6. Stone M.H., 10.1090/S0002-9947-1937-1501905-7, Trans. Amer. Math. Soc. 41 (1937), 375–381. Zbl0017.13502MR1501905DOI10.1090/S0002-9947-1937-1501905-7
  7. Urysohn P., Sur un espace métrique universel, Bull. Sci. Math. 51 (1927), 43–64. 
  8. Uspenskij V.V., On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin. 31 (1990), 181–182. Zbl0699.54011MR1056185
  9. Uspenskij V.V., A universal topological group with a countable base, Funct. Anal. Appl. 20 (1986), 86–87. MR0847156

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.