Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities
Open Mathematics (2012)
- Volume: 10, Issue: 2, page 590-602
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topRobert Černý. "Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities." Open Mathematics 10.2 (2012): 590-602. <http://eudml.org/doc/269628>.
@article{RobertČerný2012,
abstract = {Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.},
author = {Robert Černý},
journal = {Open Mathematics},
keywords = {Orlicz spaces; Orlicz-Sobolev spaces; Embedding theorems; Sharp constants; Moser-Trudinger inequality; Concentration-Compactness Principle; concentration-compactness principle; sharp constants},
language = {eng},
number = {2},
pages = {590-602},
title = {Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities},
url = {http://eudml.org/doc/269628},
volume = {10},
year = {2012},
}
TY - JOUR
AU - Robert Černý
TI - Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 590
EP - 602
AB - Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.
LA - eng
KW - Orlicz spaces; Orlicz-Sobolev spaces; Embedding theorems; Sharp constants; Moser-Trudinger inequality; Concentration-Compactness Principle; concentration-compactness principle; sharp constants
UR - http://eudml.org/doc/269628
ER -
References
top- [1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1990, 17(3), 393–413 Zbl0732.35028
- [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Functional Analysis, 1973, 14(4), 349–381 http://dx.doi.org/10.1016/0022-1236(73)90051-7 Zbl0273.49063
- [3] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437–477 http://dx.doi.org/10.1002/cpa.3160360405 Zbl0541.35029
- [4] Černý R., Concentration-Compactness Principle for embedding into multiple exponential spaces, Math. Inequal. Appl. (in press), preprint available at http://files.ele-math.com/preprints/mia-2330-pre.pdf Zbl1236.46027
- [5] Černý R., Generalized n-Laplacian: quasilinear nonhomogenous problem with the critical growth, Nonlinear Anal., 2011, 74(11), 3419–3439 http://dx.doi.org/10.1016/j.na.2011.03.002 Zbl1217.35201
- [6] Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3 Zbl1272.46023
- [7] Černý R., Gurka P., Hencl S., Concentration-compactness principle for generalized Trudinger inequalities, Z. Anal. Anwend., 2011, 30(3), 355–375 Zbl1225.46026
- [8] Černý R., Mašková S., A sharp form of an embedding into multiple exponential spaces, Czechoslovak Math. J., 2010, 60(3), 751–782 http://dx.doi.org/10.1007/s10587-010-0048-9 Zbl1224.46064
- [9] Černý R., Mašková S., On generalization of Moser’s theorem in the critical case, Math. Inequal. Appl., 2010, 13(4), 785–802 Zbl1217.46018
- [10] Cianchi A., A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J., 1996, 45(1), 39–65 http://dx.doi.org/10.1512/iumj.1996.45.1958 Zbl0860.46022
- [11] Edmunds D.E., Gurka P., Opic B., Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 1995, 44(1), 19–43 http://dx.doi.org/10.1512/iumj.1995.44.1977 Zbl0826.47021
- [12] Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math., 1995, 115(2), 151–181 Zbl0829.47024
- [13] Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel potential spaces, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(5), 995–1009 http://dx.doi.org/10.1017/S0308210500023210 Zbl0860.46024
- [14] Edmunds D.E., Gurka P., Opic B., On embeddings of logarithmic Bessel potential spaces, J. Funct. Anal., 1997, 146(1), 116–150 http://dx.doi.org/10.1006/jfan.1996.3037
- [15] Edmunds D.E., Gurka P., Opic B., Norms of embeddings of logarithmic Bessel potential spaces, Proc. Amer. Math. Soc., 1998, 126(8), 2417–2425 http://dx.doi.org/10.1090/S0002-9939-98-04327-5 Zbl0895.46020
- [16] Edmunds D.E., Krbec M., Two limiting cases of Sobolev imbeddings, Houston J. Math., 1995, 21(1), 119–128 Zbl0835.46027
- [17] Fusco N., Lions P.-L., Sbordone C., Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 1996, 124(2), 561–565 http://dx.doi.org/10.1090/S0002-9939-96-03136-X Zbl0841.46023
- [18] Hencl S., A sharp form of an embedding into exponential and double exponential spaces, J. Funct. Anal., 2003, 204(1), 196–227 http://dx.doi.org/10.1016/S0022-1236(02)00172-6 Zbl1034.46031
- [19] Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201 http://dx.doi.org/10.4171/RMI/6 Zbl0704.49005
- [20] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 1971, 20(11), 1077–1092 http://dx.doi.org/10.1512/iumj.1971.20.20101 Zbl0203.43701
- [21] Opic B., Pick L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl., 1999, 2(3), 391–467 Zbl0956.46020
- [22] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991 Zbl0724.46032
- [23] Talenti G., Inequalities in rearrangement invariant function spaces, In: Nonlinear Analysis, Function Spaces and Applications, 5, Prometheus, Prague, 1994, 177–230 Zbl0872.46020
- [24] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 1967, 17(5), 473–484 Zbl0163.36402
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.