Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities

Robert Černý

Open Mathematics (2012)

  • Volume: 10, Issue: 2, page 590-602
  • ISSN: 2391-5455

Abstract

top
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.

How to cite

top

Robert Černý. "Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities." Open Mathematics 10.2 (2012): 590-602. <http://eudml.org/doc/269628>.

@article{RobertČerný2012,
abstract = {Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.},
author = {Robert Černý},
journal = {Open Mathematics},
keywords = {Orlicz spaces; Orlicz-Sobolev spaces; Embedding theorems; Sharp constants; Moser-Trudinger inequality; Concentration-Compactness Principle; concentration-compactness principle; sharp constants},
language = {eng},
number = {2},
pages = {590-602},
title = {Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities},
url = {http://eudml.org/doc/269628},
volume = {10},
year = {2012},
}

TY - JOUR
AU - Robert Černý
TI - Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities
JO - Open Mathematics
PY - 2012
VL - 10
IS - 2
SP - 590
EP - 602
AB - Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.
LA - eng
KW - Orlicz spaces; Orlicz-Sobolev spaces; Embedding theorems; Sharp constants; Moser-Trudinger inequality; Concentration-Compactness Principle; concentration-compactness principle; sharp constants
UR - http://eudml.org/doc/269628
ER -

References

top
  1. [1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1990, 17(3), 393–413 Zbl0732.35028
  2. [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Functional Analysis, 1973, 14(4), 349–381 http://dx.doi.org/10.1016/0022-1236(73)90051-7 Zbl0273.49063
  3. [3] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437–477 http://dx.doi.org/10.1002/cpa.3160360405 Zbl0541.35029
  4. [4] Černý R., Concentration-Compactness Principle for embedding into multiple exponential spaces, Math. Inequal. Appl. (in press), preprint available at http://files.ele-math.com/preprints/mia-2330-pre.pdf Zbl1236.46027
  5. [5] Černý R., Generalized n-Laplacian: quasilinear nonhomogenous problem with the critical growth, Nonlinear Anal., 2011, 74(11), 3419–3439 http://dx.doi.org/10.1016/j.na.2011.03.002 Zbl1217.35201
  6. [6] Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3 Zbl1272.46023
  7. [7] Černý R., Gurka P., Hencl S., Concentration-compactness principle for generalized Trudinger inequalities, Z. Anal. Anwend., 2011, 30(3), 355–375 Zbl1225.46026
  8. [8] Černý R., Mašková S., A sharp form of an embedding into multiple exponential spaces, Czechoslovak Math. J., 2010, 60(3), 751–782 http://dx.doi.org/10.1007/s10587-010-0048-9 Zbl1224.46064
  9. [9] Černý R., Mašková S., On generalization of Moser’s theorem in the critical case, Math. Inequal. Appl., 2010, 13(4), 785–802 Zbl1217.46018
  10. [10] Cianchi A., A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J., 1996, 45(1), 39–65 http://dx.doi.org/10.1512/iumj.1996.45.1958 Zbl0860.46022
  11. [11] Edmunds D.E., Gurka P., Opic B., Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 1995, 44(1), 19–43 http://dx.doi.org/10.1512/iumj.1995.44.1977 Zbl0826.47021
  12. [12] Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math., 1995, 115(2), 151–181 Zbl0829.47024
  13. [13] Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel potential spaces, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(5), 995–1009 http://dx.doi.org/10.1017/S0308210500023210 Zbl0860.46024
  14. [14] Edmunds D.E., Gurka P., Opic B., On embeddings of logarithmic Bessel potential spaces, J. Funct. Anal., 1997, 146(1), 116–150 http://dx.doi.org/10.1006/jfan.1996.3037 
  15. [15] Edmunds D.E., Gurka P., Opic B., Norms of embeddings of logarithmic Bessel potential spaces, Proc. Amer. Math. Soc., 1998, 126(8), 2417–2425 http://dx.doi.org/10.1090/S0002-9939-98-04327-5 Zbl0895.46020
  16. [16] Edmunds D.E., Krbec M., Two limiting cases of Sobolev imbeddings, Houston J. Math., 1995, 21(1), 119–128 Zbl0835.46027
  17. [17] Fusco N., Lions P.-L., Sbordone C., Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 1996, 124(2), 561–565 http://dx.doi.org/10.1090/S0002-9939-96-03136-X Zbl0841.46023
  18. [18] Hencl S., A sharp form of an embedding into exponential and double exponential spaces, J. Funct. Anal., 2003, 204(1), 196–227 http://dx.doi.org/10.1016/S0022-1236(02)00172-6 Zbl1034.46031
  19. [19] Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201 http://dx.doi.org/10.4171/RMI/6 Zbl0704.49005
  20. [20] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 1971, 20(11), 1077–1092 http://dx.doi.org/10.1512/iumj.1971.20.20101 Zbl0203.43701
  21. [21] Opic B., Pick L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl., 1999, 2(3), 391–467 Zbl0956.46020
  22. [22] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991 Zbl0724.46032
  23. [23] Talenti G., Inequalities in rearrangement invariant function spaces, In: Nonlinear Analysis, Function Spaces and Applications, 5, Prometheus, Prague, 1994, 177–230 Zbl0872.46020
  24. [24] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 1967, 17(5), 473–484 Zbl0163.36402

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.