Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils

Tadeusz Kaczorek

International Journal of Applied Mathematics and Computer Science (2015)

  • Volume: 25, Issue: 2, page 217-221
  • ISSN: 1641-876X

Abstract

top
Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils are addressed. Conditions for pointwise completeness and pointwise degeneracy of the systems are established and illustrated by an example.

How to cite

top

Tadeusz Kaczorek. "Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils." International Journal of Applied Mathematics and Computer Science 25.2 (2015): 217-221. <http://eudml.org/doc/270232>.

@article{TadeuszKaczorek2015,
abstract = {Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils are addressed. Conditions for pointwise completeness and pointwise degeneracy of the systems are established and illustrated by an example.},
author = {Tadeusz Kaczorek},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {pointwise completeness; pointwise degeneracy; descriptor system; fractional system; positive system},
language = {eng},
number = {2},
pages = {217-221},
title = {Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils},
url = {http://eudml.org/doc/270232},
volume = {25},
year = {2015},
}

TY - JOUR
AU - Tadeusz Kaczorek
TI - Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils
JO - International Journal of Applied Mathematics and Computer Science
PY - 2015
VL - 25
IS - 2
SP - 217
EP - 221
AB - Pointwise completeness and pointwise degeneracy of positive fractional descriptor continuous-time linear systems with regular pencils are addressed. Conditions for pointwise completeness and pointwise degeneracy of the systems are established and illustrated by an example.
LA - eng
KW - pointwise completeness; pointwise degeneracy; descriptor system; fractional system; positive system
UR - http://eudml.org/doc/270232
ER -

References

top
  1. Bru, R., Coll, C., Romero-Vivo, S. and Sanchez, E. (2003). Some problems about structural properties of positive descriptor systems, in L. Benvenuti, A. de Santis and L. Farina (Eds.), Positive Systems, Lecture Notes in Control and Information Sciences, Vol. 294, Springer, Berlin, pp. 233-240. Zbl1060.93065
  2. Bru, R., Coll, C. and Sanchez, E. (2002). Structural properties of positive linear time-invariant difference-algebraic equations, Linear Algebra and Its Applications 349(1-3): 1-10. Zbl1006.93006
  3. Busłowicz, M. (2008). Pointwise completeness and pointwise degeneracy of linear discrete-time systems of fractional order, Zeszyty Naukowe Politechniki Śląskiej: Automatyka (151): 19-24, (in Polish). 
  4. Busłowicz, M., Kociszewski, R., Trzasko, W. (2006). Pointwise completeness and pointwise degeneracy of positive discrete-time systems with delays, Zeszyty Naukowe Politechniki Śląskiej: Automatyka (145): 55-56, (in Polish). 
  5. Choundhury, A.K. (1972). Necessary and sufficient conditions of pointwise completeness of linear time-invariant delay-differential systems, International Journal of Control 16(6): 1083-1100. Zbl0245.93019
  6. Campbell, S.L., Meyer, C.D. and Rose, N.J. (1976). Applications of the Drazin inverse to linear systems of differential equations with singular constant coefficients, SIAM Journal Applied Mathematics 31(3): 411-425. Zbl0341.34001
  7. Dai, L. (1989). Singular Control Systems, Lectures Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, Berlin. Zbl0669.93034
  8. Guang-Ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY. Zbl1227.93001
  9. Farina, L. and Rinaldi, S. (2000). Positive Linear Systems: Theory and Applications, J. Wiley, New York, NY. Zbl0988.93002
  10. Kaczorek, T. and Busłowicz, M. (2009). Pointwise completeness and pointwise degeneracy of linear continuous-time fractional order systems, Journal of Automation, Mobile Robotics & Intelligent Systems 3(1): 8-11. 
  11. Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press J. Wiley, New York, NY. Zbl0784.93002
  12. Kaczorek, T. (2002). Positive 1D and 2D Systems, Springer-Verlag, London. Zbl1005.68175
  13. Kaczorek, T. (2004). Infinite eigenvalue assignment by an output feedback for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19-23. Zbl1171.93331
  14. Kaczorek, T. (2009). Pointwise completeness and pointwise degeneracy of standard and positive fractional linear systems with state-feedbacks, Archives of Control Sciences 19(3): 295-306. Zbl1298.93179
  15. Kaczorek, T. (2010). Pointwise completeness and pointwise degeneracy of standard and positive linear systems with state-feedbacks, JAMRIS 4(1): 3-7. Zbl1298.93179
  16. Kaczorek, T. (2011a). Checking of the positivity of descriptor linear systems by the use of the shuffle algorithm, Archives of Control Sciences 21(3): 287-298. Zbl1264.93096
  17. Kaczorek, T. (2011b). Pointwise completeness and pointwise degeneracy of 2D standard and positive Fornasini-Marchesini models, COMPEL 30(2): 656-670. Zbl1225.93062
  18. Kaczorek, T. (2011c). Reduction and decomposition of singular fractional discrete-time linear systems, Acta Mechanica et Automatica 5(4): 62-66. 
  19. Kaczorek, T. (2011d). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin. Zbl1221.93002
  20. Kaczorek, T. (2011e). Singular fractional discrete-time linear systems, Control and Cybernetics 40(3): 753-761. Zbl1318.93058
  21. Kaczorek, T. (2013). Application of Drazin inverse to analysis of descriptor fractional discrete-time linear systems with regular pencils, International Journal of Applied Mathematics and Computer Science 23(1): 29-33, DOI: 10.2478/amcs-2013-0003. Zbl1293.93496
  22. Kaczorek, T. (2014a). Drazin inverse matrix method for fractional descriptor continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(2): 409-412. 
  23. Kaczorek, T. (2014b). Minimum energy control of positive fractional descriptor continuous-time linear systems, IET Control Theory and Applications 8(1): 219-225. 
  24. Olbrot, A. (1972). On degeneracy and related problems for linear constant time-lag systems, Ricerche di Automatica 3(3): 203-220. 
  25. Popov, V.M. (1972). Pointwise degeneracy of linear time-invariant delay-differential equations, Journal of Differential Equations 11: 541-561. Zbl0238.34107
  26. Trzasko, W., Busłowicz, M. and Kaczorek, T. (2007). Pointwise completeness of discrete-time cone-systems with delays, EUROCON, Warsaw, Poland, pp. 606-611. 
  27. Weiss, L. (1970). Controllability for various linear and nonlinear systems models, in J.A. Yorke, Seminar on Differential Equations and Dynamical Systems II, Lecture Notes in Mathematics, Vol. 144, Springer, Berlin, pp. 250-262. 
  28. Virnik (2008). Stability analysis of positive descriptor systems, Linear Algebra and Its Applications 429(10): 2640-2659. Zbl1147.93033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.