Generalized chromatic numbers and additive hereditary properties of graphs
Izak Broere; Samantha Dorfling; Elizabeth Jonck
Discussiones Mathematicae Graph Theory (2002)
- Volume: 22, Issue: 2, page 259-270
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topIzak Broere, Samantha Dorfling, and Elizabeth Jonck. "Generalized chromatic numbers and additive hereditary properties of graphs." Discussiones Mathematicae Graph Theory 22.2 (2002): 259-270. <http://eudml.org/doc/270271>.
@article{IzakBroere2002,
abstract = {An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be additive hereditary properties of graphs. The generalized chromatic number $χ_\{\}()$ is defined as follows: $χ_\{\}() = n$ iff ⊆ ⁿ but $ ⊊ ^\{n-1\}$. We investigate the generalized chromatic numbers of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ and ₖ.},
author = {Izak Broere, Samantha Dorfling, Elizabeth Jonck},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {property of graphs; additive; hereditary; generalized chromatic number},
language = {eng},
number = {2},
pages = {259-270},
title = {Generalized chromatic numbers and additive hereditary properties of graphs},
url = {http://eudml.org/doc/270271},
volume = {22},
year = {2002},
}
TY - JOUR
AU - Izak Broere
AU - Samantha Dorfling
AU - Elizabeth Jonck
TI - Generalized chromatic numbers and additive hereditary properties of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 2002
VL - 22
IS - 2
SP - 259
EP - 270
AB - An additive hereditary property of graphs is a class of simple graphs which is closed under unions, subgraphs and isomorphisms. Let and be additive hereditary properties of graphs. The generalized chromatic number $χ_{}()$ is defined as follows: $χ_{}() = n$ iff ⊆ ⁿ but $ ⊊ ^{n-1}$. We investigate the generalized chromatic numbers of the well-known properties of graphs ₖ, ₖ, ₖ, ₖ and ₖ.
LA - eng
KW - property of graphs; additive; hereditary; generalized chromatic number
UR - http://eudml.org/doc/270271
ER -
References
top- [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [2] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, ed., Advances in Graph Theory (Vishwa International Publication, Gulbarga, 1991) 41-68.
- [3] I. Broere, M.J. Dorfling, J.E Dunbar and M. Frick, A path(ological) partition problem, Discuss. Math. Graph Theory 18 (1998) 113-125, doi: 10.7151/dmgt.1068. Zbl0912.05048
- [4] I. Broere, P. Hajnal and P. Mihók, Partition problems and kernels of graphs, Discuss. Math. Graph Theory 17 (1997) 311-313, doi: 10.7151/dmgt.1058. Zbl0906.05059
- [5] S.A. Burr and M.S. Jacobson, On inequalities involving vertex-partition parameters of graphs, Congr. Numer. 70 (1990) 159-170. Zbl0697.05046
- [6] G. Chartrand, D.P. Geller and S.T. Hedetniemi, A generalization of the chromatic number, Proc. Camb. Phil. Soc. 64 (1968) 265-271, doi: 10.1017/S0305004100042808. Zbl0173.26204
- [7] M. Frick and F. Bullock, Detour chromatic numbers, manuscript. Zbl1002.05021
- [8] P. Hajnal, Graph partitions (in Hungarian), Thesis, supervised by L. Lovász (J.A. University, Szeged, 1984).
- [9] T.R. Jensen and B. Toft, Graph colouring problems (Wiley-Interscience Publications, New York, 1995). Zbl0971.05046
- [10] L. Lovász, On decomposition of graphs, Studia Sci. Math. Hungar 1 (1966) 237-238; MR34#1715. Zbl0151.33401
- [11] P. Mihók, Problem 4, p. 86 in: M. Borowiecki and Z. Skupień (eds), Graphs, Hypergraphs and Matroids (Zielona Góra, 1985).
- [12] J. Nesetril and V. Rödl, Partitions of vertices, Comment. Math. Univ. Carolinae 17 (1976) 85-95; MR54#173. Zbl0344.05150
Citations in EuDML Documents
top- Július Czap, Peter Mihók, Fractional Q-Edge-Coloring of Graphs
- Mieczysław Borowiecki, Arnfried Kemnitz, Massimiliano Marangio, Peter Mihók, Generalized total colorings of graphs
- Michael J. Dorfling, Samantha Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs
- Marietjie Frick, A Survey of the Path Partition Conjecture
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.