Partition problems and kernels of graphs
Izak Broere; Péter Hajnal; Peter Mihók
Discussiones Mathematicae Graph Theory (1997)
- Volume: 17, Issue: 2, page 311-313
- ISSN: 2083-5892
Access Full Article
topHow to cite
topIzak Broere, Péter Hajnal, and Peter Mihók. "Partition problems and kernels of graphs." Discussiones Mathematicae Graph Theory 17.2 (1997): 311-313. <http://eudml.org/doc/270292>.
@article{IzakBroere1997,
author = {Izak Broere, Péter Hajnal, Peter Mihók},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {kernels; longest path; partition; decomposable},
language = {eng},
number = {2},
pages = {311-313},
title = {Partition problems and kernels of graphs},
url = {http://eudml.org/doc/270292},
volume = {17},
year = {1997},
}
TY - JOUR
AU - Izak Broere
AU - Péter Hajnal
AU - Peter Mihók
TI - Partition problems and kernels of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 1997
VL - 17
IS - 2
SP - 311
EP - 313
LA - eng
KW - kernels; longest path; partition; decomposable
UR - http://eudml.org/doc/270292
ER -
References
top- [1] I. Broere, M. Dorfling J. Dunbar and M. Frick, A path(ological) partition problem (submitted). Zbl0912.05048
- [2] P. Hajnal, Graph partitions (in Hungarian) (Thesis, supervised by L. Lovász, J.A. University, Szeged, 1984).
- [3] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other combinatorial topics (Prague, 1982), (Teubner-Texte Math., 59, 1983), 173-177.
- [4] P. Mihók, Problem 4, p. 86, in: Graphs, Hypergraphs and Matroids (M. Borowiecki and Z. Skupień, eds., Zielona Góra 1985).
- [5] J. Vronka, Vertex sets of graphs with prescribed properties (in Slovak) (Thesis, supervised by P. Mihók, P.J. Šafárik University, Košice, 1986).
Citations in EuDML Documents
top- Marietjie Frick, Frank Bullock, Detour chromatic numbers
- Izak Broere, Michael Dorfling, Jean E. Dunbar, Marietjie Frick, A path(ological) partition problem
- Izak Broere, Samantha Dorfling, Elizabeth Jonck, Generalized chromatic numbers and additive hereditary properties of graphs
- Marietjie Frick, A Survey of the Path Partition Conjecture
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.