Effective formulas for invariant functions - case of elementary Reinhardt domains

Peter Pflug; Włodzimierz Zwonek

Annales Polonici Mathematici (1998)

  • Volume: 69, Issue: 2, page 175-196
  • ISSN: 0066-2216

Abstract

top
We find effective formulas for the invariant functions, appearing in the theory of several complex variables, of the elementary Reinhardt domains. This gives us the first example of a large family of domains for which the functions are calculated explicitly.

How to cite

top

Peter Pflug, and Włodzimierz Zwonek. "Effective formulas for invariant functions - case of elementary Reinhardt domains." Annales Polonici Mathematici 69.2 (1998): 175-196. <http://eudml.org/doc/270362>.

@article{PeterPflug1998,
abstract = {We find effective formulas for the invariant functions, appearing in the theory of several complex variables, of the elementary Reinhardt domains. This gives us the first example of a large family of domains for which the functions are calculated explicitly.},
author = {Peter Pflug, Włodzimierz Zwonek},
journal = {Annales Polonici Mathematici},
keywords = {invariant functions; invariant metrics and pseudodistances; pseudometrics; convex domains; Reinhardt domains},
language = {eng},
number = {2},
pages = {175-196},
title = {Effective formulas for invariant functions - case of elementary Reinhardt domains},
url = {http://eudml.org/doc/270362},
volume = {69},
year = {1998},
}

TY - JOUR
AU - Peter Pflug
AU - Włodzimierz Zwonek
TI - Effective formulas for invariant functions - case of elementary Reinhardt domains
JO - Annales Polonici Mathematici
PY - 1998
VL - 69
IS - 2
SP - 175
EP - 196
AB - We find effective formulas for the invariant functions, appearing in the theory of several complex variables, of the elementary Reinhardt domains. This gives us the first example of a large family of domains for which the functions are calculated explicitly.
LA - eng
KW - invariant functions; invariant metrics and pseudodistances; pseudometrics; convex domains; Reinhardt domains
UR - http://eudml.org/doc/270362
ER -

References

top
  1. [A] K. Azukawa, Two intrinsic pseudo-metrics with pseudoconvex indicatrices and starlike circular domains, J. Math. Soc. Japan 38 (1986), 627-647. Zbl0607.32015
  2. [BFKKMP] B. E. Blank, D. Fan, D. Klein, S. G. Krantz, D. Ma and M.-Y. Pang, The Kobayashi metric of a complex ellipsoid in ℂ², Experiment. Math. 1 (1992), 47-55. Zbl0783.32012
  3. [C] C. Carathéodory, Über eine spezielle Metrik die in der Theorie der analytischen Funktionen auftritt, Atti Pontifica Acad. Sci. Nuovi Lincei 80 (1927), 135-141. Zbl53.0314.01
  4. [E] A. Edigarian, On extremal mappings in complex ellipsoids, Ann. Polon. Math. 62 (1995), 83-96. Zbl0851.32025
  5. [Ge] G. Gentili, Regular complex geodesics in the domain Dₙ = {(z₁,...,zₙ) ∈ ℂⁿ: |z₁|+...+|zₙ| < 1}, in: Lecture Notes in Math. 1277, Springer, 1987, 35-45. 
  6. [Gi] B. Gilligan, On the Kobayashi pseudometric reduction of homogeneous spaces, Canad. Math. Bull. 31 (1988), 45-51. Zbl0617.32037
  7. [HW] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford Sci. Publ., 1978. 
  8. [HD] V. Z. Hristov and T. Davidov, Examples of typical Carathéodory and Kobayashi pseudodistances, C. R. Acad. Bulgare Sci. 39 (1986), 23-25. Zbl0595.32035
  9. [JP1] M. Jarnicki and P. Pflug, Some remarks on the product property, in: Proc. Sympos. Pure Math. 52 (Part 2), Amer. Math. Soc., 1991, 263-272. Zbl0747.32018
  10. [JP2] M. Jarnicki and P. Pflug, Invariant Distances and Metrics in Complex Analysis, Walter de Gruyter, 1993. Zbl0789.32001
  11. [JPZ] M. Jarnicki, P. Pflug and R. Zeinstra, Geodesics for convex complex ellipsoids, Ann. Scuola Norm. Sup. Pisa 20 (1993), 535-543. Zbl0812.32010
  12. [Kl1] M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France 113 (1985), 231-240. Zbl0584.32037
  13. [Kl2] M. Klimek, Pluripotential Theory, Oxford Univ. Press, 1991. 
  14. [Ko1] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Pure and Appl. Math. 2, M. Dekker, 1970. 
  15. [Ko2] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc. 82 (1976), 357-416. Zbl0346.32031
  16. [L1] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 327-479. 
  17. [L2] L. Lempert, Intrinsic distances and holomorphic retracts, Complex Analysis and Applications (Varna, 1981), Publ. House Bulgar. Acad. Sci., Sophia, 1984, 341-364. 
  18. [N] S. Nivoche, Pluricomplex Green function, capacitative notions and approximation problems in ℂⁿ, Indiana Univ. Math. J. 44 (1995), 489-510. Zbl0846.31008
  19. [Pa] M.-Y. Pang, Smoothness of the Kobayashi metric of non-convex domains, Internat. J. Math. 4 (1993), 953-987. Zbl0795.32008
  20. [PZ] P. Pflug and W. Zwonek, The Kobayashi metric for non-convex complex ellipsoids, Complex Variables 29 (1996), 59-71. Zbl0843.32015
  21. [R] H.-J. Reiffen, Die Carathéodory Distanz und ihre zugehörige Differentialmetrik, Math. Ann. 161 (1965), 315-324. Zbl0141.08803

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.