# Minimal reducible bounds for hom-properties of graphs

Discussiones Mathematicae Graph Theory (1999)

- Volume: 19, Issue: 2, page 143-158
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topAmelie Berger, and Izak Broere. "Minimal reducible bounds for hom-properties of graphs." Discussiones Mathematicae Graph Theory 19.2 (1999): 143-158. <http://eudml.org/doc/270586>.

@article{AmelieBerger1999,

abstract = {Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.},

author = {Amelie Berger, Izak Broere},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {graph homomorphisms; minimal reducible bounds; additive hereditary graph property; hom-property; homomorphism; additive hereditary properties},

language = {eng},

number = {2},

pages = {143-158},

title = {Minimal reducible bounds for hom-properties of graphs},

url = {http://eudml.org/doc/270586},

volume = {19},

year = {1999},

}

TY - JOUR

AU - Amelie Berger

AU - Izak Broere

TI - Minimal reducible bounds for hom-properties of graphs

JO - Discussiones Mathematicae Graph Theory

PY - 1999

VL - 19

IS - 2

SP - 143

EP - 158

AB - Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.

LA - eng

KW - graph homomorphisms; minimal reducible bounds; additive hereditary graph property; hom-property; homomorphism; additive hereditary properties

UR - http://eudml.org/doc/270586

ER -

## References

top- [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [2] P. Hell and J. Nesetril, The core of a graph, Discrete Math. 109 (1992) 117-126, doi: 10.1016/0012-365X(92)90282-K. Zbl0803.68080
- [3] J. Kratochví l and P. Mihók, Hom properties are uniquely factorisable into irreducible factors, to appear in Discrete Math.
- [4] J. Kratochví l, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040. Zbl0905.05038
- [5] J. Nesetril, Graph homomorphisms and their structure, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 825-832. Zbl0858.05049
- [6] J. Nesetril, V. Rödl, Partitions of Vertices, Comment. Math. Univ. Carolin. 17 (1976) 675-681.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.