Minimal reducible bounds for hom-properties of graphs
Discussiones Mathematicae Graph Theory (1999)
- Volume: 19, Issue: 2, page 143-158
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topAmelie Berger, and Izak Broere. "Minimal reducible bounds for hom-properties of graphs." Discussiones Mathematicae Graph Theory 19.2 (1999): 143-158. <http://eudml.org/doc/270586>.
@article{AmelieBerger1999,
abstract = {Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.},
author = {Amelie Berger, Izak Broere},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph homomorphisms; minimal reducible bounds; additive hereditary graph property; hom-property; homomorphism; additive hereditary properties},
language = {eng},
number = {2},
pages = {143-158},
title = {Minimal reducible bounds for hom-properties of graphs},
url = {http://eudml.org/doc/270586},
volume = {19},
year = {1999},
}
TY - JOUR
AU - Amelie Berger
AU - Izak Broere
TI - Minimal reducible bounds for hom-properties of graphs
JO - Discussiones Mathematicae Graph Theory
PY - 1999
VL - 19
IS - 2
SP - 143
EP - 158
AB - Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.
LA - eng
KW - graph homomorphisms; minimal reducible bounds; additive hereditary graph property; hom-property; homomorphism; additive hereditary properties
UR - http://eudml.org/doc/270586
ER -
References
top- [1] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of Hereditary Properties of Graphs, Discussiones Mathematicae Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037. Zbl0902.05026
- [2] P. Hell and J. Nesetril, The core of a graph, Discrete Math. 109 (1992) 117-126, doi: 10.1016/0012-365X(92)90282-K. Zbl0803.68080
- [3] J. Kratochví l and P. Mihók, Hom properties are uniquely factorisable into irreducible factors, to appear in Discrete Math.
- [4] J. Kratochví l, P. Mihók and G. Semanišin, Graphs maximal with respect to hom-properties, Discussiones Mathematicae Graph Theory 17 (1997) 77-88, doi: 10.7151/dmgt.1040. Zbl0905.05038
- [5] J. Nesetril, Graph homomorphisms and their structure, in: Y. Alavi and A. Schwenk, eds., Graph Theory, Combinatorics and Applications: Proceedings of the Seventh Quadrennial International Conference on the Theory and Applications of Graphs 2 (1995) 825-832. Zbl0858.05049
- [6] J. Nesetril, V. Rödl, Partitions of Vertices, Comment. Math. Univ. Carolin. 17 (1976) 675-681.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.