Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory

Smaïl Djebali; Abdelghani Ouahab

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2010)

  • Volume: 30, Issue: 1, page 23-49
  • ISSN: 1509-9407

Abstract

top
In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are provided.

How to cite

top

Smaïl Djebali, and Abdelghani Ouahab. "Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 30.1 (2010): 23-49. <http://eudml.org/doc/271135>.

@article{SmaïlDjebali2010,
abstract = {In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are provided.},
author = {Smaïl Djebali, Abdelghani Ouahab},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {differential inclusions; boundary value problem; fixed point; compact; convex; nonconvex; decomposable; continuous selection; controllability},
language = {eng},
number = {1},
pages = {23-49},
title = {Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory},
url = {http://eudml.org/doc/271135},
volume = {30},
year = {2010},
}

TY - JOUR
AU - Smaïl Djebali
AU - Abdelghani Ouahab
TI - Existence results for ϕ-Laplacian Dirichlet BVP of differential inclusions with application to control theory
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2010
VL - 30
IS - 1
SP - 23
EP - 49
AB - In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are provided.
LA - eng
KW - differential inclusions; boundary value problem; fixed point; compact; convex; nonconvex; decomposable; continuous selection; controllability
UR - http://eudml.org/doc/271135
ER -

References

top
  1. [1] R.P. Agarwal, H. Lü and D. O'Regan, Eigenvalues and the One-Dimensional p-Laplacian, J. Math. Anal. Appl. 266 (2002), 383-400. doi:10.1006/jmaa.2001.7742 
  2. [2] J. Appell, E. De Pascal, N.H. Thái and P.P. Zabreiko, Multi-valued superpositions, Dissertationaes Mathematicae 345 1995. 
  3. [3] J.P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984. Zbl0538.34007
  4. [4] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, 1990. 
  5. [5] S.A. Aysagaliev, K.O. Onaybar and T.G. Mazakov, The controllability of nonlinear systems, Izv. Akad. Nauk. Kazakh-SSR.-Ser. Fiz-Mat. 1 (1985), 307-314. 
  6. [6] D. Bainov and P. Simeonov, Integral Inequalities and Applications, Mathematics and its Applications, Vol. 57, Kluwer Academic Publishers, Dordrecht, 1992. Zbl0759.26012
  7. [7] S. Barnet, Introduction to Mathematical Control Theory, Clarendon Press, Oxford, 1975. 
  8. [8] M. Benchohra and S.K. Ntouyas, Multi-point boundary value problems for lower semicontinuous differential inclusions, Miskolc Math. Notes 3 (2) (2005), 19-26. Zbl1079.34004
  9. [9] M. Benchohra, S.K. Ntouyas and L. Górniewicz, Controllability of Some Nonlinear Systems in Banach Spaces (The fixed point theory approch), Plock University Press, 2003. Zbl1059.49001
  10. [10] M. Benchohra, S.K. Ntouyas and A. Ouahab, A note on a nonlinear m-point boundary value problem for p-Laplacian differential inclusions, Miskolc Math. Notes 6 (1) (2005), 19-26. Zbl1079.34004
  11. [11] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet Spaces, Nonlin. Anal., T.M.A. 61 (2005), 405-423. Zbl1086.34062
  12. [12] A. Benmezaï, S. Djebali and T. Moussaoui, Positive solutions for ϕ-Laplacian Dirichlet BVPs, Fixed point Theory 8 (2) (2007), 167-186. Zbl1156.34015
  13. [13] A. Benmezaï, S. Djebali and T. Moussaoui, Existence Results for One-dimensional Dirichlet ϕ-Laplacian BVPs: a fixed point approach, Dyn. Syst. and Appli. 17 (2008), 149-166. Zbl1168.34010
  14. [14] S. Bernfeld and V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, 1974. Zbl0286.34018
  15. [15] H.F. Bohnenblust and S. Karlin, On a theorem of Ville, in: Contribution to the theory of Games, Ann. of Math. Stud. (1950) 155-160. Zbl0041.25701
  16. [16] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. Zbl0677.54013
  17. [17] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York, 580 1977. Zbl0346.46038
  18. [18] F.S. De Blasi and J. Myjak, On continuous approximations for multifunctions, Pacific J. Math. 123 (1986), 9-31. Zbl0595.47037
  19. [19] K. Deimling, Multi-valued Differential Equations, De Gruyter, Berlin-New York, 1992. 
  20. [20] J. Dugundji and A. Granas, Fixed point Theory, Springer-Verlag, New York, 2003. 
  21. [21] L. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y''(t)∈ F(t,y,y'), Ann. Polon. Math. 54 (1991), 195-226. Zbl0731.34078
  22. [22] L. Erbe, R. Ma and C.C. Tisdell, On two point boundary value problems for second order differential inclusions, Dyn. Syst. and Appl. 16 (1) (2006), 79-88. Zbl1112.34008
  23. [23] H. Frankowska, A priori estimates for operational differential inclusions, J. Diff. Eqns. 84 (1990), 100-128. Zbl0705.34016
  24. [24] M. Frigon, Application de la Théorie de la Transversalité Topologique à des Problèmes non Linéaires pour des Équations Différentielles Ordinaires, Dissertationes Mathematicae Warszawa, Vol. CCXCVI, 1990. Zbl0728.34017
  25. [25] M. Frigon, Théorèmes d'existence de solutions d'inclusions différentielles, Topological Methods in Differential Equations and Inclusions (edited by A. Granas and M. Frigon), 51-87, NATO ASI Series C, Kluwer Acad. Publ., Dordrecht, 472 1995. 
  26. [26] L. Gasinski and N.S. Papageorgiou, Nonlinear second order multi-valued boundary value problems, Proc. Indian Acad. Sci. Math. Sci. 113 (2003), 293-319. Zbl1052.34022
  27. [27] L. Górniewicz, Topological Fixed Point Theory of Multi-valued Mappings, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht 495 1999. Zbl0937.55001
  28. [28] J. Henderson, Boundary Value Problems for Functional Differential Equations, World Scientific, Singapore, 1995. Zbl0834.00035
  29. [29] Sh. Hu and N.S. Papageorgiou, Handbook of Multi-valued Analysis, Volume I: Theory, Kluwer, Dordrecht, The Netherlands, 1997. 
  30. [30] Sh. Hu and N.S. Papageorgiou, Handbook of Multi-valued Analysis, Volume II: Applications, Kluwer, Dordrecht, The Netherlands, 2000. 
  31. [31] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter & Co. Berlin, 2001. Zbl0988.34001
  32. [32] D. Kandilakis and N.S. Papageorgiou, Existence theorem for nonlinear boundary value problems for second order differential inclusions, J. Diff. Eqns 132 (1996), 107-125. Zbl0859.34011
  33. [33] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991. 
  34. [34] V.I. Korobov, Reduction of a controllability problem to a boundary value problem, Different. Uranen. 12 (1976), 1310-1312. 
  35. [35] N.N. Krasovsky, Theory of Motion Control, Linear Systems, Nauka, Moscow, 1973. 
  36. [36] A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. Zbl0151.10703
  37. [37] H. Lian and W. Ge, Positive solutions for a four-point boundary value problem with the p-Laplacian, Nonlin. Anal., T.M.A. 68 (11) (2008), 3493-3503. Zbl1151.34019
  38. [38] H. Lü and C. Zhong, A Note on singular nonlinear boundary value problem for the one-Dimensional p-Laplacian, Appl. Math. Lett. 14 (2001), 189-194. doi:10.1016/S0893-9659(00)00134-8 Zbl0981.34013
  39. [39] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, AMS Regional Conf. Series in Math. Providence, RI, 40 1979. Zbl0414.34025
  40. [40] E.H. Papageorgiou and N.S. Papageorgiou, Nonlinear boundary value problems involving the p-Laplacian and p-Laplacian-like operators, J. for Anal. and its Appl. 24 (4) (2005), 691-707. Zbl1172.34014
  41. [41] N.S. Papageorgiou, S.R.A. Santos and V. Staicu, Three nontrivial solutions for the p-Laplacian with a nonsmooth potential, Nonlin. Anal., T.M.A. 68 (12) (2008), 3812-3827. Zbl1143.35324
  42. [42] N.S. Papageorgiou and V. Staicu, The method of upper-lower solutions for nonlinear second order differential inclusions, Nonlin. Anal., T.M.A. 67 (2007), 708-726. Zbl1122.34008
  43. [43] R. Precup, Fixed point theorems for decomposable multi-valued maps ans applications, J. Anal. and Appl. 22 (4) (2003), 843-861. Zbl1057.54032
  44. [44] I. Rachunkova and M. Tvrdy, Periodic problems with ϕ-Laplacian involving non-ordered lower and upper solutions, Fixed Point Theory 6 (2005), 99-112. 
  45. [45] G.V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics 41, American Mathematical Society, Providence, 2002. Zbl0992.34001
  46. [46] N. Thihoai and N. Van Loi, Positive solutions and continuous branches for boundary-value problems of diffrential inclusions, Elec. J. Diff. Eqns. 98 (2007), 1-8. 
  47. [47] A.A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer, Dordrecht, The Netherlands, 2000. Zbl1021.34002
  48. [48] H. Wang, On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl. 281 (2003), 287-306. Zbl1036.34032

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.