Positivity and stabilization of 2D linear systems
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2009)
- Volume: 29, Issue: 1, page 43-52
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] N.K. Bose, Applied Multidimensional System Theory (Van Nostrand Reinhold Co, New York, 1982). Zbl0574.93031
- [2] N.K. Bose, Multidimensional Systems Theory Progress, Directions and Open Problems (D. Reidel Publishing Co., 1985). Zbl0562.00017
- [3] M. Busłowicz, Stability of linear continuous-time fractional order systems with delays of the retarded type, Bull. Pol. Acad. Sci. Techn. 56 (2008), 319-324.
- [4] M. Busłowicz, Simple stability conditions for linear positive discrete-time systems with delays, Bull. Pol. Acad. Sci. Techn. 56 (2008), 325-328.
- [5] H.A. Eiselt and C.L. Sandblom, Linear Programming and its Applications (Springer, Berlin, 2007). Zbl1154.90006
- [6] L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications (J. Wiley, New York, 2000). Zbl0988.93002
- [7] M.C. Ferris, O.L. Mangasarian and S.J. Wright, Linear Programming with Matlab (SIAM, 2007).
- [8] E. Fornasini and G. Marchesini, State-space realization theory of two-dimensional filters, IEEE Trans, Autom. Contr. AC-21 (1976), 481-491. Zbl0332.93072
- [9] E. Fornasini and G. Marchesini, Double indexed dynamical systems, Math. Sys. Theory 12 (1978), 59-72. Zbl0392.93034
- [10] K. Gałkowski, Elementary operation approach to state space realization of 2D systems, IEEE Trans. On Circuit and Systems 44 (1997), 120-129. Zbl0874.93028
- [11] K. Gałkowski, State Space Realizations of Linear 2D Systems with Extensions to the General nD (n > 2) Case (Springer-Verlag, London, 2001). Zbl1007.93001
- [12] A. Hmamed, M. Ait Rami and M. Alfidi, Controller synthesis for positive 2D systems described by the Roesser model, submitted to IEEE Trans. on Circuits and Systems.
- [13] T. Kaczorek, Two-dimensional Linear Systems (Springer Verlag, Berlin, 1985). Zbl0593.93031
- [14] T. Kaczorek, Positive 1D and 2D Systems (Springer-Verlag, London, 2001).
- [15] T. Kaczorek, Asymptotic stability of positive fractional 2D linear systems, Bull. Polish Acad. Sci. Technical Sci. 57 (3) (2009), 289-292.
- [16] T. Kaczorek, Asymptotic stability of positive 1D and 2D linear systems, (Recent Advances in Control and Automation, Acad. Publ. House EXIT 2008) 41-52.
- [17] T. Kaczorek, LMI approach to stability of 2D positive systems, Multidim. Syst. Sign. Process. 20 (1) (2009), 39-54. Zbl1169.93022
- [18] T. Kaczorek, Asymptotic stability of positive 2D linear systems with delays, Proc. of XII Scientific Conf. Computer Applications in Electr. Engin. 2008.
- [19] T. Kaczorek, Practical stability of positive fractional discrete-time systems, Bull. Pol. Acad. Sci. Techn. 56 (2008), 313-318.
- [20] T. Kaczorek, Choice of the forms of Lyapunov functions for positive 2D Roesser model, Intern. J. Applied Math. And Comp. Science 17 (2007), 471-475. Zbl1234.93089
- [21] T. Kaczorek, Reachability and controllability of non-negative 2D Roesser type models, Bull. Acad. Pol. Sci. Techn. 44 (1996), 405-410. Zbl0888.93009
- [22] T. Kaczorek, Reachability and minimum energy control of positive 2D systems with delays, Control and Cybernetics 34 (2005), 411-423. Zbl1167.93359
- [23] J. Klamka, Controllability of Dynamical Systems (Kluwer Academic Publ., Dordrecht, 1991). Zbl0732.93008
- [24] J. Kurek, The general state-space model for a two-dimensional linear digital systems, IEEE Trans. Autom. Contr. AC-30 (1985), 600-602. Zbl0561.93034
- [25] R.P. Roesser, A discrete state-space model for linear image processing, IEEE Trans. Autom. Contr. AC-20 (1975), 1-10. Zbl0304.68099
- [26] M. Twardy, An LMI approach to checking stability of 2D positive systems, Bull. Pol. Acad. Sci. Techn. 55 (2007), 386-395.
- [27] M.E. Valcher, On the internal stability and asymptotic behavior of 2D positive systems, IEEE Trans. On Circuits and Systems - I, 44 (1997), 602-613. Zbl0891.93046