The choice of the forms of Lyapunov functions for a positive 2D Roesser model
International Journal of Applied Mathematics and Computer Science (2007)
- Volume: 17, Issue: 4, page 471-475
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Benvenuti L. and Farina L. (2004): A tutorial on the positive realization problem. IEEE Transactions on Automatic Control, Vol.49, No.5, pp.651-664.
- Bose N. K. (1985): Multidimensional Systems Theory Progress, Directions and Open Problems, Dordrecht: D. Reidel Publishing Co. Zbl0562.00017
- Farina L. and Rinaldi S. (2000): Positive Linear Systems. Theory and Applications. New York: Wiley. Zbl0988.93002
- Fornasini E. and Marchesini G. (1978): Double indexed dynamical systems. Mathematical Systems Theory, Vol.12, pp.59-72. Zbl0392.93034
- Fornasini E. and Marchesini G. (1976): State-space realization theory of two- dimensional filters. IEEE Transactions on Automatic Control, Vol.AC-21, pp.484-491. Zbl0332.93072
- Fornasini E. and Valcher M.E. (1996): On the spectral and combinatorial structure of 2D positive systems. Linear Algebra and Its Applications, Vol.245, pp.223-258. Zbl0857.93051
- Fornasini E. and Valcher M.E. (1997): Recent developments in 2D positive systems theory. International Journal of Applied Mathematics and Computer Science, Vol.7, No.4, pp.101-123. Zbl0913.93032
- Galkowski K. (1997): Elementary operation approach to state space realization of 2D systems. IEEE Transaction on Circuits and Systems, Vol.44, No.2, pp.120-129. Zbl0874.93028
- Kaczorek T. (1999): Externally positive 2D linear systems. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol.47, No.3, pp.227-234. Zbl0987.93044
- Kaczorek T. (1996): Reachability and controllability of non-negative 2D Roesser type models. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol.44, No.4, pp.405-410. Zbl0888.93009
- Kaczorek T. (2000): Positive 1D and 2D Systems. London: Springer. Zbl0978.93003
- Kaczorek T. (2002): When the equilibrium of positive 2D Roesser model are strictly positive. Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol.50, No.3, pp.221-227. Zbl1138.93319
- Kaczorek T. (1985): Two-Dimensional Linear Systems. Berlin: Springer. Zbl0593.93031
- Klamka J. (1999): Controllability of 2D linear systems, In: Advances in Control Highlights of ECC 1999 (P.M. Frank, Ed.), Berlin: Springer, pp.319-326.
- Klamka J. (1991): Controllability of dynamical systems. Dordrecht: Kluwer. Zbl0732.93008
- Kurek J. (1985): The general state-space model for a two-dimensional linear digital systems. IEEE Transactions on Automatic Control, Vol.-30, No.2, pp.600-602. Zbl0561.93034
- Kurek J. (2002): Stability of positive 2D systems described by the Roesser model. IEEE Transactions on Circuits and Systems I, Vol.49, No.4, pp.531-533.
- Roesser R.P. (1975) A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, Vol.AC-20, No.1, pp.1-10. Zbl0304.68099
- Valcher M.E. and Fornasini E. (1995): State models and asymptotic behaviour of 2D Roesser model. IMA Journal on Mathematical Control and Information, No.12, pp.17-36 Zbl0840.93047
Citations in EuDML Documents
top- Tadeusz Kaczorek, Positivity and stabilization of 2D linear systems
- Tadeusz Kaczorek, Independence of asymptotic stability of positive 2D linear systems with delays of their delays
- Mikołaj Busłowicz, Tadeusz Kaczorek, Simple conditions for practical stability of positive fractional discrete-time linear systems