Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals

A. Sikorska-Nowak

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2007)

  • Volume: 27, Issue: 2, page 315-327
  • ISSN: 1509-9407

Abstract

top
We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.

How to cite

top

A. Sikorska-Nowak. "Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 27.2 (2007): 315-327. <http://eudml.org/doc/271205>.

@article{A2007,
abstract = {We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.},
author = {A. Sikorska-Nowak},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {pseudo-solution; Pettis integral; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis integral; Cauchy problem},
language = {eng},
number = {2},
pages = {315-327},
title = {Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals},
url = {http://eudml.org/doc/271205},
volume = {27},
year = {2007},
}

TY - JOUR
AU - A. Sikorska-Nowak
TI - Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2007
VL - 27
IS - 2
SP - 315
EP - 327
AB - We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ < 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.
LA - eng
KW - pseudo-solution; Pettis integral; Henstock-Kurzweil integral; Henstock-Kurzweil-Pettis integral; Cauchy problem
UR - http://eudml.org/doc/271205
ER -

References

top
  1. [1] Z. Artstein, Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations 23 (1977), 224-243. Zbl0353.34044
  2. [2] J.M. Ball, Weak continuity properties of mappings and semi-groups, Proc. Royal Soc. Edinbourgh Sect. A 72 (1979), 275-280. 
  3. [3] J. Banaś, Demicontinuity and weak sequential continuity of operators in the Lebesgue space, Proceedings of the 1th Polish Symposium on Nonlinear Analysis, Łódź (1997), 124-129. 
  4. [4] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Dekker, New York and Basel, 1980. Zbl0441.47056
  5. [5] F.S. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262. 
  6. [6] S.S. Cao, The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 36-40. 
  7. [7] T.S. Chew, On Kurzweil generalized ordinary differential equations, J. Differential Equations 76 (1988), 286-293. Zbl0666.34041
  8. [8] T.S Chew and F. Flordeliza, On x' = f(t,x) and Henstock-Kurzweil integrals, Differential and Integral Equations 4 (1991), 861-868. Zbl0733.34004
  9. [9] T.S. Chew, W. van Brunt and G.C. Wake, On retarded functional differential equations and Henstock-Kurzweil integrals, Differential and Integral Equations 9 (1996), 569-580. Zbl0873.34054
  10. [10] T.S. Chew and T.L. Toh, On functional differential equation with unbounded delay and Henstock-Kurzweil integrals, New Zeland Journal of Mathematics 28 (1999), 111-123. Zbl0961.34053
  11. [11] M. Cichoń, Convergence theorems for the Henstock-Kurzweil-Pettis integral, Acta Math. Hungarica 92 (2001), 75-82. Zbl1001.26003
  12. [12] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Differ. Incl. 15 (1995), 5-14. 
  13. [13] M. Cichoń, I. Kubiaczyk and A. Sikorska, The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem, Czech. Math. J. 54 (129) (2004), 279-289. Zbl1080.34550
  14. [14] M.C. Deflour and S.K. Mitter, Hereditary differential systems with constant delays, I General case, J. Differential Equations 9 (1972), 213-235. Zbl0242.34055
  15. [15] R.F.Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1991), 81-86. Zbl0506.28007
  16. [16] R.A. Gordon, Riemann integration in Banach spaces, Rocky Mountain J. Math. 21 (1991), 923-949. Zbl0764.28008
  17. [17] R.A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91. Zbl0681.28006
  18. [18] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., Providence, R.I. 1994. Zbl0807.26004
  19. [19] R.A. Gordon, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990), 557-567. Zbl0685.28003
  20. [20] J. Hale, Functional Differential Equations, Springer-Verlag, 1971. Zbl0222.34003
  21. [21] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1991. Zbl0745.26006
  22. [22] W.J. Knight, Solutions of differential equations in Banach spaces, Duke Math. J. 41 (1974), 437-442 Zbl0288.34063
  23. [23] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mappings, Disc. Math. Differ. Incl. 15 (1995), 15-20. Zbl0832.47046
  24. [24] I. Kubiaczyk, A. Sikorska, Differential equations in Banach spaces and Henstock-Kurzweil integrals, Disc. Math. Differ. Incl. 19 (1999), 35-43. Zbl0962.34043
  25. [25] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 642-659. Zbl0642.26004
  26. [26] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces, (V. Lakshmikantham, ed.), 1978, 378-404. 
  27. [27] P.Y. Lee, Lanzhou Lectures on Henstock Integration, Ser. Real Anal. 2, World Sci., Singapore, 1989. 
  28. [28] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. Zbl0019.41603
  29. [29] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (2002), 49-60. Zbl1011.34066

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.